IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p10858-d646894.html
   My bibliography  Save this article

Analysis of Changes in Landslide Susceptibility according to Land Use over 38 Years in Lixian County, China

Author

Listed:
  • Jie Liu

    (Lanzhou Geophysical National Field Scientific Observation and Research Station, Lanzhou Geotechnical and Seismological Research Institute, Earthquake Administration, Earthquake Administration of Gansu Province, Lanzhou 730000, China)

  • Zhen Wu

    (Lanzhou Geophysical National Field Scientific Observation and Research Station, Lanzhou Geotechnical and Seismological Research Institute, Earthquake Administration, Earthquake Administration of Gansu Province, Lanzhou 730000, China)

  • Huiwen Zhang

    (State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Combating, Gansu Desert Control Research Institute, Lanzhou 730070, China)

Abstract

Landslides occur frequently in Lixian County, China, and land use has changed significantly in recent decades. We obtained land use data for the years 1980, 2000, and 2018, as well as three landslide susceptibility maps from a Random Forest model. Agricultural land, low coverage grassland, water area, and urban, rural and other construction land were prone to landslides. Landslide susceptibility was low in areas of woodland, moderate and high coverage grassland, bare rock land, desert and tundra. Areas with high landslide susceptibility were mainly located in the catchment of the study region, and a 2.61% decrease in high landslide susceptibility areas over the 38-year period was primarily driven by changes in agricultural and rural land. By contrast, a 1.42% increase in low landslide susceptibility areas over the 38-year period was driven by changes in moderate and high coverage woodland and moderate coverage grassland. There is a need for effective management measures to be implemented because areas with high landslide susceptibility are still present. We also found that human aggregations, or the absence of these, vary in their effects on the areas of Lixian County most susceptible to landslides.

Suggested Citation

  • Jie Liu & Zhen Wu & Huiwen Zhang, 2021. "Analysis of Changes in Landslide Susceptibility according to Land Use over 38 Years in Lixian County, China," Sustainability, MDPI, vol. 13(19), pages 1-23, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10858-:d:646894
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/10858/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/10858/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yongwei Li & Xianmin Wang & Hang Mao, 2020. "Influence of human activity on landslide susceptibility development in the Three Gorges area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2115-2151, December.
    2. Emmanouil Psomiadis & Andreas Papazachariou & Konstantinos X. Soulis & Despoina-Simoni Alexiou & Ioannis Charalampopoulos, 2020. "Landslide Mapping and Susceptibility Assessment Using Geospatial Analysis and Earth Observation Data," Land, MDPI, vol. 9(5), pages 1-26, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parinaz Rashidi & Sopan D. Patil & Aafke M. Schipper & Rob Alkemade & Isabel Rosa, 2023. "Downscaling Global Land-Use Scenario Data to the National Level: A Case Study for Belgium," Land, MDPI, vol. 12(9), pages 1-19, September.
    2. Evelina Volpe & Stefano Luigi Gariano & Francesca Ardizzone & Federica Fiorucci & Diana Salciarini, 2022. "A Heuristic Method to Evaluate the Effect of Soil Tillage on Slope Stability: A Pilot Case in Central Italy," Land, MDPI, vol. 11(6), pages 1-15, June.
    3. Chelsea Dandridge & Thomas Stanley & Dalia Kirschbaum & Pukar Amatya & Venkataraman Lakshmi, 2023. "The influence of land use and land cover change on landslide susceptibility in the Lower Mekong River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1499-1523, January.
    4. Siti Norsakinah Selamat & Nuriah Abd Majid & Aizat Mohd Taib, 2023. "A Comparative Assessment of Sampling Ratios Using Artificial Neural Network (ANN) for Landslide Predictive Model in Langat River Basin, Selangor, Malaysia," Sustainability, MDPI, vol. 15(1), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jihyun Yang & Jeffrey Shragge & Aaron J. Girard & Edgard Gonzales & Javier Ticona & Armando Minaya & Richard Krahenbuhl, 2023. "Seismic Characterization of a Landslide Complex: A Case History from Majes, Peru," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    2. Fanyu Zhang & Jianbing Peng & Xiaowei Huang & Hengxing Lan, 2021. "Hazard assessment and mitigation of non-seismically fatal landslides in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 785-804, March.
    3. Christos Polykretis & Manolis G. Grillakis & Athanasios V. Argyriou & Nikos Papadopoulos & Dimitrios D. Alexakis, 2021. "Integrating Multivariate (GeoDetector) and Bivariate (IV) Statistics for Hybrid Landslide Susceptibility Modeling: A Case of the Vicinity of Pinios Artificial Lake, Ilia, Greece," Land, MDPI, vol. 10(9), pages 1-23, September.
    4. Liying Sun & Bingjuan Ma & Liang Pei & Xiaohang Zhang & John L. Zhou, 2021. "The relationship of human activities and rainfall-induced landslide and debris flow hazards in Central China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 147-169, May.
    5. Jinming Zhang & Jianxi Qian & Yuefeng Lu & Xueyuan Li & Zhenqi Song, 2024. "Study on Landslide Susceptibility Based on Multi-Model Coupling: A Case Study of Sichuan Province, China," Sustainability, MDPI, vol. 16(16), pages 1-22, August.
    6. Siti Norsakinah Selamat & Nuriah Abd Majid & Aizat Mohd Taib, 2023. "A Comparative Assessment of Sampling Ratios Using Artificial Neural Network (ANN) for Landslide Predictive Model in Langat River Basin, Selangor, Malaysia," Sustainability, MDPI, vol. 15(1), pages 1-21, January.
    7. Asmita Ahmad & Meutia Farida & Nirmala Juita & Muh Jayadi, 2023. "Soil micromorphology for modeling spatial on landslide susceptibility mapping: a case study in Kelara Subwatershed, Jeneponto Regency of South Sulawesi, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1445-1462, September.
    8. Xin Wei & Lulu Zhang & Junyao Luo & Dongsheng Liu, 2021. "A hybrid framework integrating physical model and convolutional neural network for regional landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 471-497, October.
    9. Okoli Jude Emeka & Haslinda Nahazanan & Bahareh Kalantar & Zailani Khuzaimah & Ojogbane Success Sani, 2021. "Evaluation of the Effect of Hydroseeded Vegetation for Slope Reinforcement," Land, MDPI, vol. 10(10), pages 1-23, September.
    10. Sudatta Wadadar & Bhabani Prasad Mukhopadhyay, 2022. "GIS-based landslide susceptibility zonation and comparative analysis using analytical hierarchy process and conventional weighting-based multivariate statistical methods in the Lachung River Basin, No," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1199-1236, September.
    11. Hakan Tanyaş & Tolga Görüm & Dalia Kirschbaum & Luigi Lombardo, 2022. "Could road constructions be more hazardous than an earthquake in terms of mass movement?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 639-663, May.
    12. Athanasios V. Argyriou & Christos Polykretis & Richard M. Teeuw & Nikos Papadopoulos, 2022. "Geoinformatic Analysis of Rainfall-Triggered Landslides in Crete (Greece) Based on Spatial Detection and Hazard Mapping," Sustainability, MDPI, vol. 14(7), pages 1-25, March.
    13. Haoran Fang & Yun Shao & Chou Xie & Bangsen Tian & Chaoyong Shen & Yu Zhu & Yihong Guo & Ying Yang & Guanwen Chen & Ming Zhang, 2023. "A New Approach to Spatial Landslide Susceptibility Prediction in Karst Mining Areas Based on Explainable Artificial Intelligence," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    14. Haishan Wang & Jian Xu & Shucheng Tan & Jinxuan Zhou, 2023. "Landslide Susceptibility Evaluation Based on a Coupled Informative–Logistic Regression Model—Shuangbai County as an Example," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    15. Li Zhuo & Yupu Huang & Jing Zheng & Jingjing Cao & Donghu Guo, 2023. "Landslide Susceptibility Mapping in Guangdong Province, China, Using Random Forest Model and Considering Sample Type and Balance," Sustainability, MDPI, vol. 15(11), pages 1-23, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10858-:d:646894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.