IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p10753-d644764.html
   My bibliography  Save this article

Aging Characteristics of Asphalt Binder under Strong Ultraviolet Irradiation in Northwest China

Author

Listed:
  • Ling Zou

    (School of Transportation, Southeast University, Nanjing 211189, China
    CCCC First Highway Consultants Co., Ltd., Xi’an 710075, China
    School of Highway, Chang’an University, Xi’an 710064, China)

  • Yan Zhang

    (CCCC First Highway Consultants Co., Ltd., Xi’an 710075, China)

  • Bangyi Liu

    (School of Transportation, Southeast University, Nanjing 211189, China)

Abstract

Asphalt pavement is significantly affected by ultraviolet (UV) aging. Therefore, the establishment of an asphalt UV aging evaluation system is desirable for highway construction in areas which experience strong UV radiation. In this study, Dunhuang City in Gansu Province (northwest China) was used as the research site. Base and SBS modified asphalts were selected, and their performance changes before and after UV aging were studied. An asphalt UV aging evaluation system was established, including the conditions for an indoor, accelerated UV aging test as well as evaluation indicators. The results showed that the adverse effect of UV aging on asphalt performance was greater than that of RTFOT and PAV, and that the low-temperature performance of asphalt degraded most rapidly. SBS modified asphalt was more resistant to UV aging than base asphalt, while 60/80 pen grade base asphalt was found to be unsuitable for use on pavements which are exposed to strong UV radiation. The residual penetration, penetration attenuation index at 25 °C, and residual ductility of the asphalt were used as indicators to characterize the aging of asphalt, while the fracture energy method was used as a supplementary evaluation method.

Suggested Citation

  • Ling Zou & Yan Zhang & Bangyi Liu, 2021. "Aging Characteristics of Asphalt Binder under Strong Ultraviolet Irradiation in Northwest China," Sustainability, MDPI, vol. 13(19), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10753-:d:644764
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/10753/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/10753/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, H. & Hu, B. & Zhang, L. & Zhao, X.J. & Shang, K.Z. & Wang, Y.S. & Wang, J., 2017. "Ultraviolet radiation over China: Spatial distribution and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1371-1383.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teng Wang & Zhirong Chen & Jinlong Hong & Zhen Liao & Di Wang & Dongdong Yuan & Yufei Zhang & Augusto Cannone Falchetto, 2023. "Preparation and Properties of High-Viscosity Modified Asphalt with a Novel Thermoplastic Rubber," Sustainability, MDPI, vol. 15(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaqi Sun & Shiyu Huang & Qing Lu & Shuo Li & Shizhen Zhao & Xiaojian Zheng & Qian Zhou & Wenxiao Zhang & Jie Li & Lili Wang & Ke Zhang & Wenyu Zheng & Xianzhong Feng & Baohui Liu & Fanjiang Kong & Fe, 2023. "UV-B irradiation-activated E3 ligase GmILPA1 modulates gibberellin catabolism to increase plant height in soybean," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Shi, Hongrong & Yang, Dazhi & Wang, Wenting & Fu, Disong & Gao, Ling & Zhang, Jinqiang & Hu, Bo & Shan, Yunpeng & Zhang, Yingjie & Bian, Yuxuan & Chen, Hongbin & Xia, Xiangao, 2023. "First estimation of high-resolution solar photovoltaic resource maps over China with Fengyun-4A satellite and machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10753-:d:644764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.