IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p10726-d644227.html
   My bibliography  Save this article

Energy Costs of Reducing Industrial Sulfur Dioxide Emissions in China

Author

Listed:
  • Haiying Liu

    (Center for Quantitative Economics of Jilin University, Faculty of Social Sciences, Jilin University, Changchun 130012, China)

  • Ying Zhong

    (School of Business, Faculty of Social Sciences, Jilin University, Changchun 130012, China)

  • Chunhong Zhang

    (School of Business, Faculty of Social Sciences, Jilin University, Changchun 130012, China)

Abstract

With increasing environmental pollution, China has instituted corresponding environmental regulations to address environmental challenges. Estimating the costs of such environmental regulations can help governments to formulate rational environmental policies. This review estimates the costs of environmental regulations based on a novel perspective of energy consumption. Using panel data for Chinese provincial regions in 2006–2015, we developed a non-parametric directional distance function and estimated different optimal energy inputs based on data envelopment analysis under two scenarios, namely, those with and without emission reduction constraints. The gap between the two groups of optimal energy inputs facilitated the estimation of the energy costs associated with reducing SO 2 (sulfur dioxide) emissions in China’s industrial sectors. The results suggest that approximately 13.40 tons of standard coal were required to reduce SO 2 emissions by 1 ton, highlighting the discrepancy between energy savings and emission reduction. The energy costs of SO 2 emission reduction were the highest in West China (18.63), followed by those in Central and Northeast China; meanwhile, those in East China were the lowest (9.91). The large differences between the energy costs of emission reduction in different regions indicated that economically underdeveloped areas have scope for improvement with respect to energy structures and innovation in the green technology field.

Suggested Citation

  • Haiying Liu & Ying Zhong & Chunhong Zhang, 2021. "Energy Costs of Reducing Industrial Sulfur Dioxide Emissions in China," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10726-:d:644227
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/10726/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/10726/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carl Pasurka, 2001. "Technical Change and Measuring Pollution Abatement Costs: An Activity Analysis Framework," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 18(1), pages 61-85, January.
    2. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    3. Leleu, Hervé, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.
    4. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    5. Tang, Kai & Yang, Lin & Zhang, Jianwu, 2016. "Estimating the regional total factor efficiency and pollutants’ marginal abatement costs in China: A parametric approach," Applied Energy, Elsevier, vol. 184(C), pages 230-240.
    6. Coggins, Jay S. & Swinton, John R., 1996. "The Price of Pollution: A Dual Approach to Valuing SO2Allowances," Journal of Environmental Economics and Management, Elsevier, vol. 30(1), pages 58-72, January.
    7. Kaneko, Shinji & Fujii, Hidemichi & Sawazu, Naoya & Fujikura, Ryo, 2010. "Financial allocation strategy for the regional pollution abatement cost of reducing sulfur dioxide emissions in the thermal power sector in China," Energy Policy, Elsevier, vol. 38(5), pages 2131-2141, May.
    8. R. H. Coase, 2013. "The Problem of Social Cost," Journal of Law and Economics, University of Chicago Press, vol. 56(4), pages 837-877.
    9. Fare, Rolf & Grosskopf, Shawna, 1983. "Measuring output efficiency," European Journal of Operational Research, Elsevier, vol. 13(2), pages 173-179, June.
    10. Färe, Rolf & Grosskopf, Shawna & Pasurka,, Carl A., 2013. "Tradable permits and unrealized gains from trade," Energy Economics, Elsevier, vol. 40(C), pages 416-424.
    11. Masayuki Shimizu, 2020. "The relationship between pollution abatement costs and environmental regulation: Evidence from the Chinese industrial sector," Review of Development Economics, Wiley Blackwell, vol. 24(2), pages 668-690, May.
    12. Hailu, Atakelty & Veeman, Terrence S., 2000. "Environmentally Sensitive Productivity Analysis of the Canadian Pulp and Paper Industry, 1959-1994: An Input Distance Function Approach," Journal of Environmental Economics and Management, Elsevier, vol. 40(3), pages 251-274, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Haiying & Owens, Katharine A. & Yang, Ke & Zhang, Chunhong, 2020. "Pollution abatement costs and technical changes under different environmental regulations," China Economic Review, Elsevier, vol. 62(C).
    2. Tang, Kai & Yang, Lin & Zhang, Jianwu, 2016. "Estimating the regional total factor efficiency and pollutants’ marginal abatement costs in China: A parametric approach," Applied Energy, Elsevier, vol. 184(C), pages 230-240.
    3. Ma, Chunbo & Hailu, Atakelty & You, Chaoying, 2019. "A critical review of distance function based economic research on China’s marginal abatement cost of carbon dioxide emissions," Energy Economics, Elsevier, vol. 84(C).
    4. Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
    5. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    6. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    7. Wen, Xiaojie & Yao, Shunbo & Sauer, Johannes, 2022. "Shadow prices and abatement cost of soil erosion in Shaanxi Province, China: Convex expectile regression approach," Ecological Economics, Elsevier, vol. 201(C).
    8. Surender Kumar & Rakesh Kumar Jain, 2021. "Cost of CO2 emission mitigation and its decomposition: evidence from coal-fired thermal power sector in India," Empirical Economics, Springer, vol. 61(2), pages 693-717, August.
    9. Dong-Hyun Oh & JongWuk Ahn & Sinwoo Lee & Hyundo Choi, 2021. "Measuring technical inefficiency and CO2 shadow price of Korean fossil-fuel generation companies using deterministic and stochastic approaches," Energy & Environment, , vol. 32(3), pages 403-423, May.
    10. Lee, Sang-choon & Oh, Dong-hyun & Lee, Jeong-dong, 2014. "A new approach to measuring shadow price: Reconciling engineering and economic perspectives," Energy Economics, Elsevier, vol. 46(C), pages 66-77.
    11. Wu, Jianxin & Ma, Chunbo & Tang, Kai, 2019. "The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities," Energy, Elsevier, vol. 178(C), pages 685-694.
    12. Chunbo Ma and Atakelty Hailu, 2016. "The Marginal Abatement Cost of Carbon Emissions in China," The Energy Journal, International Association for Energy Economics, vol. 0(China Spe).
    13. Wu, Yinyin & Yu, Jie & Song, Malin & Chen, Jiandong & Hou, Wenxuan, 2021. "Shadow prices of industrial air pollutant emissions in China," Economic Modelling, Elsevier, vol. 94(C), pages 726-736.
    14. Di Maria, Corrado & Zarkovic, Maja & Hintermann, Beat, 2020. "Are Emissions Trading Schemes Cost-effective?," Working papers 2020/13, Faculty of Business and Economics - University of Basel.
    15. Xiaoliang Guan & Junbiao Zhang & Xianrong Wu & Linlin Cheng, 2018. "The Shadow Prices of Carbon Emissions in China’s Planting Industry," Sustainability, MDPI, vol. 10(3), pages 1-12, March.
    16. Du, Limin & Mao, Jie, 2015. "Estimating the environmental efficiency and marginal CO2 abatement cost of coal-fired power plants in China," Energy Policy, Elsevier, vol. 85(C), pages 347-356.
    17. Bowen Xiao & Dongxiao Niu & Han Wu & Haichao Wang, 2017. "Marginal Abatement Cost of CO 2 in China Based on Directional Distance Function: An Industry Perspective," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    18. Zhang, Ning & Huang, Xuhui & Qi, Chao, 2022. "The effect of environmental regulation on the marginal abatement cost of industrial firms: Evidence from the 11th Five-Year Plan in China," Energy Economics, Elsevier, vol. 112(C).
    19. Shen, Zhiyang & Bai, Kaixuan & Hong, Tianyang & Balezentis, Tomas, 2021. "Evaluation of carbon shadow price within a non-parametric meta-frontier framework: The case of OECD, ASEAN and BRICS," Applied Energy, Elsevier, vol. 299(C).
    20. Wang, Juan & Li, Ziming & Wang, Yanan, 2024. "How does China's energy-consumption trading policy affect the carbon abatement costs? An analysis based on spatial difference-in-differences method," Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:10726-:d:644227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.