IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p8868-d610658.html
   My bibliography  Save this article

Assessing Five Major Exploited Tuna Species in India (Eastern and Western Indian Ocean) Using the Monte Carlo Method (CMSY) and the Bayesian Schaefer Model (BSM)

Author

Listed:
  • Ubair Nisar

    (Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
    U.N. and R.A. contributed equally to this work.)

  • Rafiya Ali

    (Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China
    U.N. and R.A. contributed equally to this work.)

  • Yongtong Mu

    (Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China)

  • Yu Sun

    (School of Management, Qingdao Agricultural University, Qingdao 266109, China)

Abstract

The status of data-limited tuna fishery stocks in India has been tested using the latest and most advanced computerized methods, CMSY and BSM. Five tuna fish stocks from both the Eastern and Western Indian Ocean were assessed using both catch and catch per unit effort (CPUE) details available from 1990 to 2015. Both methods help to calculate the maximum sustainable yield (MSY) and exploitation of MSY relative to biomass (B/B MSY ). The results of maximum intrinsic rate (r) and carrying capacity are also estimated. The results revealed that all tuna stocks in both the regions were overfished, with one, the longtail tuna ( Thunnus tonggol ) in the Western Indian Ocean strongly overfished (B/B MSY = 0.44). Such observations, although still preliminary since the techniques used to produce them are relatively new, often associated with the situation and exploitation of all the stock in question, making the CMSY and BSM methods promising for stock assessment in data-deficit situations. The study concludes that in order to restore the status of these five tuna stocks in both regions, it would be necessary to reduce the fishing pressure.

Suggested Citation

  • Ubair Nisar & Rafiya Ali & Yongtong Mu & Yu Sun, 2021. "Assessing Five Major Exploited Tuna Species in India (Eastern and Western Indian Ocean) Using the Monte Carlo Method (CMSY) and the Bayesian Schaefer Model (BSM)," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8868-:d:610658
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/8868/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/8868/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shen, Gongming & Heino, Mikko, 2014. "An overview of marine fisheries management in China," Marine Policy, Elsevier, vol. 44(C), pages 265-272.
    2. Ransom A. Myers & Boris Worm, 2003. "Rapid worldwide depletion of predatory fish communities," Nature, Nature, vol. 423(6937), pages 280-283, May.
    3. Daniel Pauly & Dirk Zeller, 2016. "Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining," Nature Communications, Nature, vol. 7(1), pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David A Carozza & Daniele Bianchi & Eric D Galbraith, 2017. "Formulation, General Features and Global Calibration of a Bioenergetically-Constrained Fishery Model," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-28, January.
    2. Ila France Porcher & Brian W. Darvell, 2022. "Shark Fishing vs. Conservation: Analysis and Synthesis," Sustainability, MDPI, vol. 14(15), pages 1-33, August.
    3. Akpalu, Wisdom & Vondolia, Godwin K. & Adom, Phillip K. & Peprah, Dorcas Asaah, 2023. "Passive Participation in Illegal Fishing and the Welfare of Fishmongers in a Developing Country," EfD Discussion Paper 23-9, Environment for Development, University of Gothenburg.
    4. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    5. Speirs, Douglas C. & Greenstreet, Simon P.R. & Heath, Michael R., 2016. "Modelling the effects of fishing on the North Sea fish community size composition," Ecological Modelling, Elsevier, vol. 321(C), pages 35-45.
    6. Hongzhi Ma & Yexi Zhong & Minghui Ou & Wenhui Wang & Xinghua Feng, 2022. "The Transformation of Fishermen’s Livelihoods in the Context of a Comprehensive Fishing Ban: A Case Study of Datang Village at the Poyang Lake Region, China," Land, MDPI, vol. 11(12), pages 1-14, December.
    7. Staffan Waldo & Anton Paulrud, 2017. "Reducing Greenhouse Gas Emissions in Fisheries: The Case of Multiple Regulatory Instruments in Sweden," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(2), pages 275-295, October.
    8. Stephanie M. Sabbagh & Gordon M. Hickey, 2019. "Social Factors Affecting Sustainable Shark Conservation and Management in Belize," Sustainability, MDPI, vol. 12(1), pages 1-19, December.
    9. Bradley Chen & Victoria Y. Fan, 2015. "Strategic Provider Behavior Under Global Budget Payment with Price Adjustment in Taiwan," Health Economics, John Wiley & Sons, Ltd., vol. 24(11), pages 1422-1436, November.
    10. Angeles Cámara & Rosa Santero-Sánchez, 2019. "Economic, Social, and Environmental Impact of a Sustainable Fisheries Model in Spain," Sustainability, MDPI, vol. 11(22), pages 1-16, November.
    11. Dana Miller & Stefano Mariani, 2013. "Irish fish, Irish people: roles and responsibilities for an emptying ocean," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(2), pages 529-546, April.
    12. Lydia C. L. Teh & William W. L. Cheung & Rashid Sumaila, 2022. "Assessing the Economic Contribution of Ocean-Based Activities Using the Pacific Coast of British Columbia as a Case Study," Sustainability, MDPI, vol. 14(14), pages 1-14, July.
    13. Nye, Janet A. & Gamble, Robert J. & Link, Jason S., 2013. "The relative impact of warming and removing top predators on the Northeast US large marine biotic community," Ecological Modelling, Elsevier, vol. 264(C), pages 157-168.
    14. Muallil, Richard N. & Mamauag, Samuel S. & Cababaro, Jeffrey T. & Arceo, Hazel O. & Aliño, Porfirio M., 2014. "Catch trends in Philippine small-scale fisheries over the last five decades: The fishers׳ perspectives," Marine Policy, Elsevier, vol. 47(C), pages 110-117.
    15. Maroto, Jose M. & Moran, Manuel, 2008. "Increasing marginal returns and the danger of collapse of commercially valuable fish stocks," Ecological Economics, Elsevier, vol. 68(1-2), pages 422-428, December.
    16. Blasiak, Robert, 2015. "Balloon effects reshaping global fisheries," Marine Policy, Elsevier, vol. 57(C), pages 18-20.
    17. Claude E. Boyd & Aaron A. McNevin & Robert P. Davis, 2022. "The contribution of fisheries and aquaculture to the global protein supply," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(3), pages 805-827, June.
    18. Martin Bohle & Cornelia E. Nauen & Eduardo Marone, 2019. "Ethics to Intersect Civic Participation and Formal Guidance," Sustainability, MDPI, vol. 11(3), pages 1-17, February.
    19. Qi Chen & Weiteng Shen & Bing Yu, 2018. "Assessing the Vulnerability of Marine Fisheries in China: Towards an Inter-Provincial Perspective," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    20. Yi Zhang & Yao Xu & Hao Kong & Gang Zhou, 2022. "Spatial-Temporal Evolution of Coupling Coordination between Green Transformation and the Quality of Economic Development," Sustainability, MDPI, vol. 14(23), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8868-:d:610658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.