IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p8727-d608563.html
   My bibliography  Save this article

Exploring the Potential in LID Technologies for Remediating Heavy Metals in Carwash Wastewater

Author

Listed:
  • Mahta Talebzadeh

    (Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada)

  • Caterina Valeo

    (Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada)

  • Rishi Gupta

    (Department of Civil Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada)

  • C. Peter Constabel

    (Centre for Forest Biology, Biology University of Victoria, Victoria, BC V8W 2Y2, Canada)

Abstract

Carwash wastewater (CWW) can be a significant source of environmental pollution due to the diversity and high concentrations of contaminants it contains. This toxic wastewater can contain several different heavy metals that if left untreated, can enter surface and sub-surface waters. Innovative, nature-based solutions such as low-impact development (LID) technologies may provide an eco-friendly CWW treatment process that is both effective and affordable. This research reviews the available literature to provide definitive values of flowrate and contaminant concentrations found in CWW around the globe. Dividing LID technologies into two groups, vegetated and unvegetated systems, the authors explored the literature for the general performance of these technologies to sustainably treat heavy metals in CWW. Depending on the car wash’s size and intended purpose, whether cleaning vehicles in agriculture-based rural communities, mining, or in high-density urban environments, volumetric flowrates requiring treatment found in six different countries ranged from 35–400 L/car. CWW also contains a wide range of contaminants at various levels, including COD, turbidity, TDS and TSS, surfactants, oils and greases, and heavy metals such as lead, cadmium, zinc, copper, chromium, and iron. Heavy metal removal by both vegetated and unvegetated LIDs shows mixed results in the literature, but given the different processes involved in both types, the authors propose a system that combines these types in order to provide all the necessary removal processes, including mechanical filtration, adsorption, sedimentation, chemical and biological treatment processes.

Suggested Citation

  • Mahta Talebzadeh & Caterina Valeo & Rishi Gupta & C. Peter Constabel, 2021. "Exploring the Potential in LID Technologies for Remediating Heavy Metals in Carwash Wastewater," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8727-:d:608563
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/8727/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/8727/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deely, John & Hynes, Stephen & Barquín, José & Burgess, Diane & Finney, Graham & Silió, Ana & Álvarez-Martínez, Jose Manuel & Bailly, Denis & Ballé-Béganton, Johanna, 2020. "Barrier identification framework for the implementation of blue and green infrastructures," Land Use Policy, Elsevier, vol. 99(C).
    2. Zhiying Xu & Caterina Valeo & Angus Chu & Yao Zhao, 2021. "The Efficacy of Whole Oyster Shells for Removing Copper, Zinc, Chromium, and Cadmium Heavy Metal Ions from Stormwater," Sustainability, MDPI, vol. 13(8), pages 1-23, April.
    3. Fthenakis, Vasilis M., 2004. "Life cycle impact analysis of cadmium in CdTe PV production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 303-334, August.
    4. Andreas Aditya Hermawan & Amin Talei & Janet Yip Cheng Leong & Mayuran Jayatharan & Hui Weng Goh & Sina Alaghmand, 2019. "Performance Assessment of a Laboratory Scale Prototype Biofiltration System in Tropical Region," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    5. Rishi Gupta & Neeta Raj Sharma & Caterina Valeo & Mohit Garg & Ashutosh Sharma & Sakshi Aneja & Shiv O. Prasher & C. Peter Constabel, 2020. "Novel Integration of Geopolymer Pavers, Silva Cells and Poplar Trees for In-Situ Treatment of Car-Wash Wastewater," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    6. Isaac Dekker & Shabnam Sharifyazd & Evans Batung & Kristian L. Dubrawski, 2021. "Maximizing Benefits to Nature and Society in Techno-Ecological Innovation for Water," Sustainability, MDPI, vol. 13(11), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen-Hui Kuan & Ching-Yao Hu & Li-Wei Ke & Jung-Ming Wu, 2022. "A Review of On-Site Carwash Wastewater Treatment," Sustainability, MDPI, vol. 14(10), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fthenakis, Vasilis & Wang, Wenming & Kim, Hyung Chul, 2009. "Life cycle inventory analysis of the production of metals used in photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 493-517, April.
    2. Ravikumar, Dwarakanath & Malghan, Deepak, 2013. "Material constraints for indigenous production of CdTe PV: Evidence from a Monte Carlo experiment using India's National Solar Mission Benchmarks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 393-403.
    3. Kornelia Przestrzelska & Katarzyna Wartalska & Weronika Rosińska & Jakub Jurasz & Bartosz Kaźmierczak, 2024. "Climate Resilient Cities: A Review of Blue-Green Solutions Worldwide," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(15), pages 5885-5910, December.
    4. Marwede, Max & Berger, Wolfgang & Schlummer, Martin & Mäurer, Andreas & Reller, Armin, 2013. "Recycling paths for thin-film chalcogenide photovoltaic waste – Current feasible processes," Renewable Energy, Elsevier, vol. 55(C), pages 220-229.
    5. Raugei, Marco & Fthenakis, Vasilis, 2010. "Cadmium flows and emissions from CdTe PV: future expectations," Energy Policy, Elsevier, vol. 38(9), pages 5223-5228, September.
    6. Enrica Leccisi & Marco Raugei & Vasilis Fthenakis, 2016. "The Energy and Environmental Performance of Ground-Mounted Photovoltaic Systems—A Timely Update," Energies, MDPI, vol. 9(8), pages 1-13, August.
    7. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    8. Leena Grandell & Mikael Höök, 2015. "Assessing Rare Metal Availability Challenges for Solar Energy Technologies," Sustainability, MDPI, vol. 7(9), pages 1-20, August.
    9. Yichao He & Anna Jorgensen & Qian Sun & Amy Corcoran & Maria Jesus Alfaro-Simmonds, 2022. "Negotiating Complexity: Challenges to Implementing Community-Led Nature-Based Solutions in England Pre- and Post-COVID-19," IJERPH, MDPI, vol. 19(22), pages 1-19, November.
    10. Tyagi, V.V. & Rahim, Nurul A.A. & Rahim, N.A. & Selvaraj, Jeyraj A./L., 2013. "Progress in solar PV technology: Research and achievement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 443-461.
    11. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
    12. Michael Redlinger & Roderick Eggert & Michael Woodhouse, 2014. "Evaluating the Availability of Gallium, Indium, and Tellurium from Recycled Photovoltaic Modules," Working Papers 2014-09, Colorado School of Mines, Division of Economics and Business.
    13. Berger, Wolfgang & Simon, Franz-Georg & Weimann, Karin & Alsema, Erik A., 2010. "A novel approach for the recycling of thin film photovoltaic modules," Resources, Conservation & Recycling, Elsevier, vol. 54(10), pages 711-718.
    14. Sinha, Parikhit & Kriegner, Christopher J. & Schew, William A. & Kaczmar, Swiatoslav W. & Traister, Matthew & Wilson, David J., 2008. "Regulatory policy governing cadmium-telluride photovoltaics: A case study contrasting life cycle management with the precautionary principle," Energy Policy, Elsevier, vol. 36(1), pages 381-387, January.
    15. Ogbomo, Osarumen O. & Amalu, Emeka H. & Ekere, N.N. & Olagbegi, P.O., 2017. "A review of photovoltaic module technologies for increased performance in tropical climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1225-1238.
    16. Asim, Nilofar & Sopian, Kamaruzzaman & Ahmadi, Shideh & Saeedfar, Kasra & Alghoul, M.A. & Saadatian, Omidreza & Zaidi, Saleem H., 2012. "A review on the role of materials science in solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5834-5847.
    17. Tammaro, Marco & Rimauro, Juri & Fiandra, Valeria & Salluzzo, Antonio, 2015. "Thermal treatment of waste photovoltaic module for recovery and recycling: Experimental assessment of the presence of metals in the gas emissions and in the ashes," Renewable Energy, Elsevier, vol. 81(C), pages 103-112.
    18. Songi Kim & Bongju Jeong, 2016. "Closed-Loop Supply Chain Planning Model for a Photovoltaic System Manufacturer with Internal and External Recycling," Sustainability, MDPI, vol. 8(7), pages 1-17, June.
    19. Ornella Malandrino & Daniela Sica & Mario Testa & Stefania Supino, 2017. "Policies and Measures for Sustainable Management of Solar Panel End-of-Life in Italy," Sustainability, MDPI, vol. 9(4), pages 1-15, March.
    20. Makhsoos, Ashkan & Mousazadeh, Hossein & Mohtasebi, Seyed Saeid & Abdollahzadeh, Mohammadreza & Jafarbiglu, Hamid & Omrani, Elham & Salmani, Yousef & Kiapey, Ali, 2018. "Design, simulation and experimental evaluation of energy system for an unmanned surface vehicle," Energy, Elsevier, vol. 148(C), pages 362-372.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8727-:d:608563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.