IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v98y2011i5p867-876.html
   My bibliography  Save this article

Effects of snowmelt on phosphorus and sediment losses from agricultural watersheds in Eastern Canada

Author

Listed:
  • Su, J.J.
  • van Bochove, E.
  • Thériault, G.
  • Novotna, B.
  • Khaldoune, J.
  • Denault, J.T.
  • Zhou, J.
  • Nolin, M.C.
  • Hu, C.X.
  • Bernier, M.
  • Benoy, G.
  • Xing, Z.S.
  • Chow, L.

Abstract

Snowmelt is the most important hydrological event in cold climates. However, snowmelt effects on suspended sediment (SS) and phosphorus (P) loss are poorly documented in Canada. Using two agricultural watersheds in Eastern Canada, this study aimed to quantify SS and P loss during the snowmelt period and to investigate how snowmelt contributes SS and P loss. Water samples were collected from the outlets of the Bras d'Henri watershed (BHW, 2007-2009) and Black Brook watershed (BBW, 2008-2009) and measured for SS and P concentrations. Hydrological parameters (precipitation, snow water equivalent, and runoff discharge), soil frozen status and soil temperature were also measured. Results revealed inter-annual variation of snowmelt conditions and SS and P losses in each watershed. The 2008 snowmelt in BHW and BBW mainly occurred on unfrozen soils, while the 2007 and 2009 snowmelts in BHW and 2009 snowmelt in BBW mainly on frozen soils. In BHW, 2008 snowmelt caused much higher median concentrations of SS, total P (TP), dissolved P (DP) and particulate P (PP) in stream water than 2007 and 2009; ratios of PP fractions in TP were variable with events but the median values were similar, suggesting both DP and PP important contrubutors to TP loss. In BBW, the median concentration of dissolved reactive phosphorus (DRP) in stream water was greater in 2008 snowmelt than in 2009 snowmelt; PP dominated TP loss. This study also suggests that soil state (i.e. frozen status) and rainfall were the most important factors influencing SS and P losses during snowmelt. Furthermore, snowmelt P export represented more than 20% of the total annual P export in BHW, and more than 12% of the annual DRP export in BBW. Thus, we strongly recommend adopting Best Management Practices (BMPs) that specifically target sediment and P loss during snowmelt.

Suggested Citation

  • Su, J.J. & van Bochove, E. & Thériault, G. & Novotna, B. & Khaldoune, J. & Denault, J.T. & Zhou, J. & Nolin, M.C. & Hu, C.X. & Bernier, M. & Benoy, G. & Xing, Z.S. & Chow, L., 2011. "Effects of snowmelt on phosphorus and sediment losses from agricultural watersheds in Eastern Canada," Agricultural Water Management, Elsevier, vol. 98(5), pages 867-876, March.
  • Handle: RePEc:eee:agiwat:v:98:y:2011:i:5:p:867-876
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(10)00396-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pengfei Yu & Tianxiao Li & Qiang Fu & Dong Liu & Renjie Hou & Hang Zhao, 2021. "Effect of Biochar on Soil and Water Loss on Sloping Farmland in the Black Soil Region of Northeast China during the Spring Thawing Period," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    2. Tianxiao Li & Pengfei Yu & Dong Liu & Qiang Fu & Renjie Hou & Hang Zhao & Song Xu & Yutian Zuo & Ping Xue, 2021. "Effects of Biochar on Sediment Transport and Rill Erosion after Two Consecutive Years of Seasonal Freezing and Thawing," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    3. Lozier, T.M. & Macrae, M.L. & Brunke, R. & Van Eerd, L.L., 2017. "Release of phosphorus from crop residue and cover crops over the non-growing season in a cool temperate region," Agricultural Water Management, Elsevier, vol. 189(C), pages 39-51.
    4. Junyu Qi & Sheng Li & Qiang Li & Zisheng Xing & Charles P.-A. Bourque & Fan-Rui Meng, 2016. "Assessing an Enhanced Version of SWAT on Water Quantity and Quality Simulation in Regions with Seasonal Snow Cover," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5021-5037, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:98:y:2011:i:5:p:867-876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.