IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i12p6700-d574119.html
   My bibliography  Save this article

Comparative Evaluation of Top-Down GOSAT XCO 2 vs. Bottom-Up National Reports in the European Countries

Author

Listed:
  • Youngseok Hwang

    (Department of Climate Change, Kyungpook National University, Daegu 41566, Korea)

  • Stephan Schlüter

    (Department of Mathematics, Natural and Economic Sciences, Ulm University of Applied Sciences, 89075 Ulm, Germany)

  • Tanupriya Choudhury

    (Department of Informatics, School of Computer Science, University of Petroleum & Energy Studies (UPES), Dehradun 248 007, Uttarakhand, India)

  • Jung-Sup Um

    (Department of Geography, Kyungpook National University, Daegu 41566, Korea)

Abstract

Submitting national inventory reports (NIRs) on emissions of greenhouse gases (GHGs) is obligatory for parties of the United Nations Framework Convention on Climate Change (UNFCCC). The NIR forms the basis for monitoring individual countries’ progress on mitigating climate change. Countries prepare NIRs using the default bottom–up methodology of the Intergovernmental Panel on Climate Change (IPCC), as approved by the Kyoto protocol. We provide tangible evidence of the discrepancy between official bottom–up NIR reporting (unit: tons) versus top–down XCO 2 reporting (unit: ppm) within the European continent, as measured by the Greenhouse Gases Observing Satellite (GOSAT). Bottom–up NIR (annual growth rate of CO 2 emission from 2010 to 2016: −1.55%) does not show meaningful correlation (geographically weighted regression coefficient = −0.001, R 2 = 0.024) to top–down GOSAT XCO 2 (annual growth rate: 0.59%) in the European countries. The top five countries within the European continent on carbon emissions in NIR do not match the top five countries on GOSAT XCO 2 concentrations. NIR exhibits anthropogenic carbon-generating activity within country boundaries, whereas satellite signals reveal the trans-boundary movement of natural and anthropogenic carbon. Although bottom–up NIR reporting has already gained worldwide recognition as a method to track national follow-up for treaty obligations, the single approach based on bottom–up did not present background atmospheric CO 2 density derived from the air mass movement between the countries. In conclusion, we suggest an integrated measuring, reporting, and verification (MRV) approach using top–down observation in combination with bottom–up NIR that can provide sufficient countrywide objective evidence for national follow-up activities.

Suggested Citation

  • Youngseok Hwang & Stephan Schlüter & Tanupriya Choudhury & Jung-Sup Um, 2021. "Comparative Evaluation of Top-Down GOSAT XCO 2 vs. Bottom-Up National Reports in the European Countries," Sustainability, MDPI, vol. 13(12), pages 1-15, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6700-:d:574119
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/12/6700/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/12/6700/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gregg Marland & Khrystyna Hamal & Matthias Jonas, 2009. "How Uncertain Are Estimates of CO2 Emissions?," Journal of Industrial Ecology, Yale University, vol. 13(1), pages 4-7, February.
    2. Marco Grasso, 2016. "The Political Feasibility of Consumption-Based Carbon Accounting," New Political Economy, Taylor & Francis Journals, vol. 21(4), pages 401-413, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xuelin & Yang, Lin, 2023. "Natural resources, remittances and carbon emissions: A Dutch Disease perspective with remittances for South Asia," Resources Policy, Elsevier, vol. 85(PB).
    2. McCullough, Michael & Holland, David W. & Painter, Kathleen M. & Stodick, Leroy & Yoder, Jonathan K., 2011. "Economic and Environmental Impacts of Washington State Biofuel Policy Alternatives," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 36(3), pages 1-15.
    3. Karakaya, Etem & Yılmaz, Burcu & Alataş, Sedat, 2018. "How Production Based and Consumption Based Emissions Accounting Systems Change Climate Policy Analysis: The Case of CO2 Convergence," MPRA Paper 88781, University Library of Munich, Germany.
    4. Xu, Xueliu & Wang, Qian & Ran, Chenyang & Mu, Mingjie, 2021. "Is burden responsibility more effective? A value-added method for tracing worldwide carbon emissions," Ecological Economics, Elsevier, vol. 181(C).
    5. Konstantinaviciute, Inga & Bobinaite, Viktorija, 2015. "Comparative analysis of carbon dioxide emission factors for energy industries in European Union countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 603-612.
    6. Dervis Kirikkaleli & Hasan Güngör & Tomiwa Sunday Adebayo, 2022. "Consumption‐based carbon emissions, renewable energy consumption, financial development and economic growth in Chile," Business Strategy and the Environment, Wiley Blackwell, vol. 31(3), pages 1123-1137, March.
    7. Johanne Pelletier & Jonah Busch & Catherine Potvin, 2015. "Addressing uncertainty upstream or downstream of accounting for emissions reductions from deforestation and forest degradation," Climatic Change, Springer, vol. 130(4), pages 635-648, June.
    8. Khrystyna Boychuk & Rostyslav Bun, 2014. "Regional spatial inventories (cadastres) of GHG emissions in the Energy sector: Accounting for uncertainty," Climatic Change, Springer, vol. 124(3), pages 561-574, June.
    9. Lu, Qinli & Fang, Kai & Heijungs, Reinout & Feng, Kuishuang & Li, Jiashuo & Wen, Qi & Li, Yanmei & Huang, Xianjin, 2020. "Imbalance and drivers of carbon emissions embodied in trade along the Belt and Road Initiative," Applied Energy, Elsevier, vol. 280(C).
    10. Cui, Duo & Deng, Zhu & Liu, Zhu, 2019. "China’s non-fossil fuel CO2 emissions from industrial processes," Applied Energy, Elsevier, vol. 254(C).
    11. Talbot, David & Boiral, Olivier, 2013. "Can we trust corporates GHG inventories? An investigation among Canada's large final emitters," Energy Policy, Elsevier, vol. 63(C), pages 1075-1085.
    12. Matthias Jonas & Piotr Żebrowski, 2019. "The crux with reducing emissions in the long-term: The underestimated “now” versus the overestimated “then”," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 1169-1190, August.
    13. Jolanta Jarnicka & Piotr Żebrowski, 2019. "Learning in greenhouse gas emission inventories in terms of uncertainty improvement over time," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 1143-1168, August.
    14. Eduardo Baltar Souza Leão & Angela Márcia Andrade Silva & Angélica Fabíola Rodrigues Prado & Luís Felipe Nascimento & José Célio Silveira Andrade, 2022. "Assessing urban emissions through different methodologies: an analysis of Brazilian cities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(3), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6700-:d:574119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.