IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p6230-d566875.html
   My bibliography  Save this article

Data-Driven Methodology to Support Long-Lasting Logistics and Decision Making for Urban Last-Mile Operations

Author

Listed:
  • Edgar Gutierrez-Franco

    (Center for Latin-American Logistics Innovation, Massachusetts Institute of Technology, Global SCALE Network, Cambridge, MA 02139, USA
    Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 162993, USA)

  • Christopher Mejia-Argueta

    (Food and Retail Operations Lab, Center for Transportation and Logistics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA)

  • Luis Rabelo

    (Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 162993, USA)

Abstract

Last-mile operations in forward and reverse logistics are responsible for a large part of the costs, emissions, and times in supply chains. These operations have increased due to the growth of electronic commerce and direct-to-consumer strategies. We propose a novel data- and model-driven framework to support decision making for urban distribution. The methodology is composed of diverse, hybrid, and complementary techniques integrated by a decision support system. This approach focuses on key elements of megacities such as socio-demographic diversity, portfolio mix, logistics fragmentation, high congestion factors, and dense commercial areas. The methodological framework will allow decision makers to create early warning systems and, with the implementation of optimization, machine learning, and simulation models together, make the best utilization of resources. The advantages of the system include flexibility in decision making, social welfare, increased productivity, and reductions in cost and environmental impacts. A real-world illustrative example is presented under conditions in one of the most congested cities: the megacity of Bogota, Colombia. Data come from a retail organization operating in the city. A network of stakeholders is analyzed to understand the complex urban distribution. The execution of the methodology was capable of solving a complex problem reducing the number of vehicles utilized, increasing the resource capacity utilization, and reducing the cost of operations of the fleet, meeting all constraints. These constraints included the window of operations and accomplishing the total number of deliveries. Furthermore, the methodology could accomplish the learning function using deep reinforcement learning in reasonable computational times. This preliminary analysis shows the potential benefits, especially in understudied metropolitan areas from emerging markets, supporting a more effective delivery process, and encouraging proactive, dynamic decision making during the execution stage.

Suggested Citation

  • Edgar Gutierrez-Franco & Christopher Mejia-Argueta & Luis Rabelo, 2021. "Data-Driven Methodology to Support Long-Lasting Logistics and Decision Making for Urban Last-Mile Operations," Sustainability, MDPI, vol. 13(11), pages 1-33, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6230-:d:566875
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/6230/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/6230/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nagy, Gabor & Salhi, Said, 2007. "Location-routing: Issues, models and methods," European Journal of Operational Research, Elsevier, vol. 177(2), pages 649-672, March.
    2. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    3. Dekker, Rommert & Bloemhof, Jacqueline & Mallidis, Ioannis, 2012. "Operations Research for green logistics – An overview of aspects, issues, contributions and challenges," European Journal of Operational Research, Elsevier, vol. 219(3), pages 671-679.
    4. Janjevic, Milena & Winkenbach, Matthias, 2020. "Characterizing urban last-mile distribution strategies in mature and emerging e-commerce markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 164-196.
    5. Laoucine Kerbache & T. van Woensel & N. Vandaele & Herbert Peremans, 2008. "Vehicle routing with dynamic travel times: A queueing approach," Post-Print hal-00465127, HAL.
    6. Van Woensel, T. & Kerbache, L. & Peremans, H. & Vandaele, N., 2008. "Vehicle routing with dynamic travel times: A queueing approach," European Journal of Operational Research, Elsevier, vol. 186(3), pages 990-1007, May.
    7. Xiaoning Liu & Linjie Gao & Anning Ni & Nan Ye, 2020. "Understanding Better the Influential Factors of Commuters’ Multi-Day Travel Behavior: Evidence from Shanghai, China," Sustainability, MDPI, vol. 12(1), pages 1-13, January.
    8. Christian Tilk & Katharina Olkis & Stefan Irnich, 2020. "The Last-mile Vehicle Routing Problem with Delivery Options," Working Papers 2017, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    9. Bergmann, Felix M. & Wagner, Stephan M. & Winkenbach, Matthias, 2020. "Integrating first-mile pickup and last-mile delivery on shared vehicle routes for efficient urban e-commerce distribution," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 26-62.
    10. Teodor Gabriel Crainic & Nicoletta Ricciardi & Giovanni Storchi, 2009. "Models for Evaluating and Planning City Logistics Systems," Transportation Science, INFORMS, vol. 43(4), pages 432-454, November.
    11. Prodhon, Caroline & Prins, Christian, 2014. "A survey of recent research on location-routing problems," European Journal of Operational Research, Elsevier, vol. 238(1), pages 1-17.
    12. Akbar, Prottoy & Duranton, Gilles, 2017. "Measuring the Cost of Congestion in Highly Congested City: Bogotá," Research Department working papers 1028, CAF Development Bank Of Latinamerica.
    13. Dondo, Rodolfo & Cerda, Jaime, 2007. "A cluster-based optimization approach for the multi-depot heterogeneous fleet vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1478-1507, February.
    14. Cardoso, Sónia R. & Barbosa-Póvoa, Ana Paula F.D. & Relvas, Susana, 2013. "Design and planning of supply chains with integration of reverse logistics activities under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 226(3), pages 436-451.
    15. Errico, F. & Desaulniers, G. & Gendreau, M. & Rei, W. & Rousseau, L.-M., 2016. "A priori optimization with recourse for the vehicle routing problem with hard time windows and stochastic service times," European Journal of Operational Research, Elsevier, vol. 249(1), pages 55-66.
    16. Rocio de la Torre & Canan G. Corlu & Javier Faulin & Bhakti S. Onggo & Angel A. Juan, 2021. "Simulation, Optimization, and Machine Learning in Sustainable Transportation Systems: Models and Applications," Sustainability, MDPI, vol. 13(3), pages 1-21, February.
    17. Jesus Gonzalez-Feliu & Joëlle Morana, 2010. "Are City Logistics Solutions Sustainable? The Cityporto case," Post-Print halshs-00530016, HAL.
    18. Jian Yang & Patrick Jaillet & Hani Mahmassani, 2004. "Real-Time Multivehicle Truckload Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 38(2), pages 135-148, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonor Teixeira & Ana Luísa Ramos & Carolina Costa & Dulce Pedrosa & César Faria & Carina Pimentel, 2023. "SOLFI: An Integrated Platform for Sustainable Urban Last-Mile Logistics’ Operations—Study, Design and Development," Sustainability, MDPI, vol. 15(3), pages 1-23, February.
    2. Ahmed Zainul Abideen & Veera Pandiyan Kaliani Sundram & Jaafar Pyeman & Abdul Kadir Othman & Shahryar Sorooshian, 2021. "Digital Twin Integrated Reinforced Learning in Supply Chain and Logistics," Logistics, MDPI, vol. 5(4), pages 1-22, November.
    3. Boggio-Marzet, Alessandra & Villa-Martínez, Rafael & Monzón, Andrés, 2023. "Selection of policy actions for e-commerce last-mile delivery in cities: An online multi-actor multi-criteria evaluation," Transport Policy, Elsevier, vol. 142(C), pages 15-27.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diego Cattaruzza & Nabil Absi & Dominique Feillet & Jesús González-Feliu, 2017. "Vehicle routing problems for city logistics," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 51-79, March.
    2. Drexl, Michael & Schneider, Michael, 2015. "A survey of variants and extensions of the location-routing problem," European Journal of Operational Research, Elsevier, vol. 241(2), pages 283-308.
    3. Janjevic, Milena & Merchán, Daniel & Winkenbach, Matthias, 2021. "Designing multi-tier, multi-service-level, and multi-modal last-mile distribution networks for omni-channel operations," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1059-1077.
    4. Snoeck, André & Winkenbach, Matthias, 2020. "The value of physical distribution flexibility in serving dense and uncertain urban markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 151-177.
    5. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    6. Zhu, Stuart X. & Ursavas, Evrim, 2018. "Design and analysis of a satellite network with direct delivery in the pharmaceutical industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 190-207.
    7. Tricoire, Fabien & Parragh, Sophie N., 2017. "Investing in logistics facilities today to reduce routing emissions tomorrow," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 56-67.
    8. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    9. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    10. Günther Zäpfel & Michael Bögl, 2016. "An adaptive structure of a hub-and-spoke system with direct and depot shipments in the case of volatile demand over time," Journal of Business Economics, Springer, vol. 86(7), pages 697-721, October.
    11. Menezes, Mozart B.C. & Ruiz-Hernández, Diego & Verter, Vedat, 2016. "A rough-cut approach for evaluating location-routing decisions via approximation algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 87(C), pages 89-106.
    12. Chen, Yi-Ting & Sun, Edward W. & Chang, Ming-Feng & Lin, Yi-Bing, 2021. "Pragmatic real-time logistics management with traffic IoT infrastructure: Big data predictive analytics of freight travel time for Logistics 4.0," International Journal of Production Economics, Elsevier, vol. 238(C).
    13. Drexl, Michael, 2013. "Applications of the vehicle routing problem with trailers and transshipments," European Journal of Operational Research, Elsevier, vol. 227(2), pages 275-283.
    14. Celikoglu, Hilmi Berk, 2013. "Reconstructing freeway travel times with a simplified network flow model alternating the adopted fundamental diagram," European Journal of Operational Research, Elsevier, vol. 228(2), pages 457-466.
    15. Jann Michael Weinand & Kenneth Sorensen & Pablo San Segundo & Max Kleinebrahm & Russell McKenna, 2020. "Research trends in combinatorial optimisation," Papers 2012.01294, arXiv.org.
    16. Matthias Winkenbach & Paul R. Kleindorfer & Stefan Spinler, 2016. "Enabling Urban Logistics Services at La Poste through Multi-Echelon Location-Routing," Transportation Science, INFORMS, vol. 50(2), pages 520-540, May.
    17. Fatnassi, Ezzeddine & Chaouachi, Jouhaina & Klibi, Walid, 2015. "Planning and operating a shared goods and passengers on-demand rapid transit system for sustainable city-logistics," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 440-460.
    18. Rocio de la Torre & Canan G. Corlu & Javier Faulin & Bhakti S. Onggo & Angel A. Juan, 2021. "Simulation, Optimization, and Machine Learning in Sustainable Transportation Systems: Models and Applications," Sustainability, MDPI, vol. 13(3), pages 1-21, February.
    19. Paolo Gianessi & Laurent Alfandari & Lucas Létocart & Roberto Wolfler Calvo, 2016. "The Multicommodity-Ring Location Routing Problem," Transportation Science, INFORMS, vol. 50(2), pages 541-558, May.
    20. Li, Hongqi & Zhang, Lu & Lv, Tan & Chang, Xinyu, 2016. "The two-echelon time-constrained vehicle routing problem in linehaul-delivery systems," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 169-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6230-:d:566875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.