IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p6195-d566286.html
   My bibliography  Save this article

Risk Prioritization for Failure Modes in Mining Railcars

Author

Listed:
  • Mohammad Javad Rahimdel

    (Department of Mining Engineering, Faculty of Engineering, University of Birjand, Birjand 9717434765, Iran)

  • Behzad Ghodrati

    (Division of Operation and Maintenance Engineering, Lulea University of Technology, 97187 Lulea, Sweden)

Abstract

Railway transportation systems are generally used to transport minerals from large-scale mines. Any failure in the railcar components may cause delays or even catastrophic derailment accidents. Failure mode and effect analysis (FMEA) is an effective tool for the risk assessment of mechanical systems. This method is an appropriate approach to identify the critical failure modes and provide proper control measures to reduce the level of risk. This research aims to propose an approach to identify and prioritize the failure modes based on their importance degree. To achieve this, the analytical hierarchy process (AHP) is used along with the FMEA. To compensate for the scarcities of the conventional FMEA in using the linguistic variables, the proposed approach is developed under the fuzzy environment. The proposed approach was applied in a case study, a rolling stock operated in an iron ore mine located in Sweden. The results of this study are helpful to identify not only the most important failure modes but also the most serious and critical ones.

Suggested Citation

  • Mohammad Javad Rahimdel & Behzad Ghodrati, 2021. "Risk Prioritization for Failure Modes in Mining Railcars," Sustainability, MDPI, vol. 13(11), pages 1-14, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6195-:d:566286
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/6195/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/6195/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Bhuvanesh Kumar & R. Parameshwaran, 2020. "A comprehensive model to prioritise lean tools for manufacturing industries: a fuzzy FMEA, AHP and QFD-based approach," International Journal of Services and Operations Management, Inderscience Enterprises Ltd, vol. 37(2), pages 170-196.
    2. Shi, Junyou & He, Qingjie & Wang, Zili, 2020. "Integrated Stateflow-based simulation modelling and testability evaluation for electronic built-in-test (BIT) systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chih-Hung Hsu & Xu He & Ting-Yi Zhang & An-Yuan Chang & Wan-Ling Liu & Zhi-Qiang Lin, 2022. "Enhancing Supply Chain Agility with Industry 4.0 Enablers to Mitigate Ripple Effects Based on Integrated QFD-MCDM: An Empirical Study of New Energy Materials Manufacturers," Mathematics, MDPI, vol. 10(10), pages 1-35, May.
    2. Bhattacharjee, Pushparenu & Dey, Vidyut & Mandal, U.K. & Paul, Susmita, 2022. "Quantitative risk assessment of submersible pump components using Interval number-based Multinomial Logistic Regression(MLR) model," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Wang, Jingyuan & Liu, Zhen & Wang, Jiahong & Long, Bing & Zhou, Xiuyun, 2022. "A general enhancement method for test strategy generation for the sequential fault diagnosis of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    4. Gan, Chenyu & Ding, Shuiting & Qiu, Tian & Liu, Peng & Ma, Qinglin, 2024. "Model-based safety analysis with time resolution (MBSA-TR) method for complex aerothermal–mechanical systems of aero-engines," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6195-:d:566286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.