IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i10p5424-d553292.html
   My bibliography  Save this article

Assessment of Tuscany Landscape Structure According to the Regional Landscape Plan Partition

Author

Listed:
  • Martina Venturi

    (Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, via San Bonaventura 13, 50145 Florence, Italy)

  • Francesco Piras

    (Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, via San Bonaventura 13, 50145 Florence, Italy)

  • Federica Corrieri

    (Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, via San Bonaventura 13, 50145 Florence, Italy)

  • Beatrice Fiore

    (Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, via San Bonaventura 13, 50145 Florence, Italy)

  • Antonio Santoro

    (Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, via San Bonaventura 13, 50145 Florence, Italy)

  • Mauro Agnoletti

    (Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, via San Bonaventura 13, 50145 Florence, Italy)

Abstract

The landscape is considered a strategic asset by the Tuscan regional government, also for its economic role, meaning that a specific Landscape Plan has been developed, dividing the region into 20 Landscape Units and representing the main planning instrument at the regional level. Following the aims of the Landscape Plan and the guidelines of the European Landscape Convention, it is necessary to develop an adequate assessment of the landscape, evaluating the main typologies and their characteristics. The aim of this research is to carry out an assessment of the landscape diversity in Tuscany based on 20 study areas, analyzing land uses and landscape mosaic structures through the application of landscape metrics: number of land uses, mean patch size (MPS), Hill’s diversity number, edge density (ED), patch density (PD), land use diversity (LUD). The results highlight a correlation between the landscape typologies (forest, agricultural, mixed, periurban) and the complexity of the landscape structure, especially in relation to MPS and PD, while the combination of PD and LUD calculated on the basis of a hexagonal grid allows obtaining landscape complexity maps. Despite the phenomena of reforestation and urban sprawl of recent decades, Tuscany still preserves different landscape typologies characterized by a good level of complexity. This is particularly evident in mixed landscapes, while agricultural landscapes have a larger variability because of different historical land organization forms. The methodology applied in this study provided a large amount of data about land uses and the landscape mosaic structure and complexity and proved to be effective in assessing the landscape structure and in creating a database that can represent a baseline for future monitoring.

Suggested Citation

  • Martina Venturi & Francesco Piras & Federica Corrieri & Beatrice Fiore & Antonio Santoro & Mauro Agnoletti, 2021. "Assessment of Tuscany Landscape Structure According to the Regional Landscape Plan Partition," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5424-:d:553292
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/10/5424/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/10/5424/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mauro Agnoletti & Francesca Emanueli & Federica Corrieri & Martina Venturi & Antonio Santoro, 2019. "Monitoring Traditional Rural Landscapes. The Case of Italy," Sustainability, MDPI, vol. 11(21), pages 1-19, November.
    2. Antonio Santoro & Martina Venturi & Sihem Ben Maachia & Fadwa Benyahia & Federica Corrieri & Francesco Piras & Mauro Agnoletti, 2020. "Agroforestry Heritage Systems as Agrobiodiversity Hotspots. The Case of the Mountain Oases of Tunisia," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
    3. Cláudia M. Viana & Jorge Rocha, 2020. "Evaluating Dominant Land Use/Land Cover Changes and Predicting Future Scenario in a Rural Region Using a Memoryless Stochastic Method," Sustainability, MDPI, vol. 12(10), pages 1-28, May.
    4. Karsten Rusche & Mario Reimer & Rico Stichmann, 2019. "Mapping and Assessing Green Infrastructure Connectivity in European City Regions," Sustainability, MDPI, vol. 11(6), pages 1-12, March.
    5. Hans Renes & Csaba Centeri & Alexandra Kruse & Zdeněk Kučera, 2019. "The Future of Traditional Landscapes: Discussions and Visions," Land, MDPI, vol. 8(6), pages 1-12, June.
    6. Bingjie Song & Guy M. Robinson & Douglas K. Bardsley, 2020. "Measuring Multifunctional Agricultural Landscapes," Land, MDPI, vol. 9(8), pages 1-30, August.
    7. Randelli, Filippo & Martellozzo, Federico, 2019. "Is rural tourism-induced built-up growth a threat for the sustainability of rural areas? The case study of Tuscany," Land Use Policy, Elsevier, vol. 86(C), pages 387-398.
    8. Solecka, Iga & Raszka, Beata & Krajewski, Piotr, 2018. "Landscape analysis for sustainable land use policy: A case study in the municipality of Popielów, Poland," Land Use Policy, Elsevier, vol. 75(C), pages 116-126.
    9. Lausch, Angela & Blaschke, Thomas & Haase, Dagmar & Herzog, Felix & Syrbe, Ralf-Uwe & Tischendorf, Lutz & Walz, Ulrich, 2015. "Understanding and quantifying landscape structure – A review on relevant process characteristics, data models and landscape metrics," Ecological Modelling, Elsevier, vol. 295(C), pages 31-41.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Santoro & Qingyi Yu & Francesco Piras & Beatrice Fiore & Alessandra Bazzurro & Mauro Agnoletti, 2022. "From Flood Control System to Agroforestry Heritage System: Past, Present and Future of the Mulberry-Dykes and Fishponds System of Huzhou City, China," Land, MDPI, vol. 11(11), pages 1-22, October.
    2. Francesco Piras & Beatrice Fiore & Antonio Santoro, 2022. "Small Cultural Forests: Landscape Role and Ecosystem Services in a Japanese Cultural Landscape," Land, MDPI, vol. 11(9), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Piras & Beatrice Fiore & Antonio Santoro, 2022. "Small Cultural Forests: Landscape Role and Ecosystem Services in a Japanese Cultural Landscape," Land, MDPI, vol. 11(9), pages 1-20, September.
    2. Huiqi Song & Pengwei Chen & Yongxun Zhang & Youcheng Chen, 2021. "Study Progress of Important Agricultural Heritage Systems (IAHS): A Literature Analysis," Sustainability, MDPI, vol. 13(19), pages 1-22, September.
    3. Mangalasseril Mohammad Anees & Ellen Banzhaf & Jingxia Wang & Pawan Kumar Joshi, 2023. "Quality Index Approach for Analysis of Urban Green Infrastructure in Himalayan Cities," Land, MDPI, vol. 12(2), pages 1-21, January.
    4. Fanqi Meng & Li Dong & Yu Zhang, 2023. "Spatiotemporal Dynamic Analysis and Simulation Prediction of Land Use and Landscape Patterns from the Perspective of Sustainable Development in Tourist Cities," Sustainability, MDPI, vol. 15(19), pages 1-21, October.
    5. Dora Isabel Rodrigues Ferreira & José-Manuel Sánchez-Martín, 2022. "Agricultural Landscapes as a Basis for Promoting Agritourism in Cross-Border Iberian Regions," Agriculture, MDPI, vol. 12(5), pages 1-35, May.
    6. Deslatte, Aaron & Szmigiel-Rawska, Katarzyna & Tavares, António F. & Ślawska, Justyna & Karsznia, Izabela & Łukomska, Julita, 2022. "Land use institutions and social-ecological systems: A spatial analysis of local landscape changes in Poland," Land Use Policy, Elsevier, vol. 114(C).
    7. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    8. Xifan Chen & Lihua Xu & Rusong Zhu & Qiwei Ma & Yijun Shi & Zhangwei Lu, 2022. "Changes and Characteristics of Green Infrastructure Network Based on Spatio-Temporal Priority," Land, MDPI, vol. 11(6), pages 1-17, June.
    9. Dong Chen & Kangning Xiong & Juan Zhang, 2022. "Progress on the Integrity Protection in the Natural World Heritage Site and Agroforestry Development in the Buffer Zone: An Implications for the World Heritage Karst," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
    10. Shirvani Dastgerdi, Ahmadreza & Sargolini, Massimo & Broussard Allred, Shorna & Chatrchyan, Allison Morrill & Drescher, Michael & DeGeer, Christopher, 2022. "Climate change risk reduction in cultural landscapes: Insights from Cinque Terre and Waterloo," Land Use Policy, Elsevier, vol. 123(C).
    11. Mustapha El Janati & Nouraya Akkal-Corfini & Ahmed Bouaziz & Abdallah Oukarroum & Paul Robin & Ahmed Sabri & Mohamed Chikhaoui & Zahra Thomas, 2021. "Benefits of Circular Agriculture for Cropping Systems and Soil Fertility in Oases," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
    12. Viccaro, Mauro & Romano, Severino & Prete, Carmelina & Cozzi, Mario, 2021. "Rural planning? An integrated dynamic model for assessing quality of life at a local scale," Land Use Policy, Elsevier, vol. 111(C).
    13. Šťastná Milada & Vaishar Antonín & Vavrouchová Hana & Ševelová Miloslava & Kozlovská Silvie & Doskočilová Veronika & Lincová Helena, 2015. "Changes Of A Rural Landscape In Czech Areas Of Different Types," European Countryside, Sciendo, vol. 7(2), pages 111-133, June.
    14. Elena Gorbenkova & Elena Shcherbina, 2020. "Historical-Genetic Features in Rural Settlement System: A Case Study from Mogilev District (Mogilev Oblast, Belarus)," Land, MDPI, vol. 9(5), pages 1-17, May.
    15. Palazzo, Maria & Vollero, Agostino & Vitale, Pierluigi & Siano, Alfonso, 2021. "Urban and rural destinations on Instagram: Exploring the influencers’ role in #sustainabletourism," Land Use Policy, Elsevier, vol. 100(C).
    16. Csaba Centeri & Dénes Saláta & Alfréd Szilágyi & György Orosz & Szilárd Czóbel & Viktor Grónás & Ferenc Gyulai & Eszter Kovács & Ákos Pető & Julianna Skutai & Zsolt Biró & Ákos Malatinszky, 2021. "Selected Good Practices in the Hungarian Agricultural Heritage," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    17. Troxler, David & Zabel, Astrid & Grêt-Regamey, Adrienne, 2023. "Identifying drivers of forest clearances in Switzerland," Forest Policy and Economics, Elsevier, vol. 150(C).
    18. Angioletta Voghera & Benedetta Giudice, 2019. "Evaluating and Planning Green Infrastructure: A Strategic Perspective for Sustainability and Resilience," Sustainability, MDPI, vol. 11(10), pages 1-21, May.
    19. Viviana Ferrario, 2021. "Learning from Agricultural Heritage? Lessons of Sustainability from Italian “Coltura Promiscua”," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    20. Alexander E. Cagle & Alona Armstrong & Giles Exley & Steven M. Grodsky & Jordan Macknick & John Sherwin & Rebecca R. Hernandez, 2020. "The Land Sparing, Water Surface Use Efficiency, and Water Surface Transformation of Floating Photovoltaic Solar Energy Installations," Sustainability, MDPI, vol. 12(19), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5424-:d:553292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.