IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3905-d356344.html
   My bibliography  Save this article

Evaluating the Impact of Climate Change on Water Productivity of Maize in the Semi-Arid Environment of Punjab, Pakistan

Author

Listed:
  • Muhammad Mohsin Waqas

    (Water Management and Agricultural Mechanization Research Center, Centre for Climate Change and Hydrological Modeling Studies, Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
    Department of Irrigation and Drainage, University of Agriculture, Faisalabad 38000, Pakistan)

  • Syed Hamid Hussain Shah

    (Department of Irrigation and Drainage, University of Agriculture, Faisalabad 38000, Pakistan)

  • Usman Khalid Awan

    (International Water Management Institute (IWMI), Lahore 35700, Pakistan)

  • Muhammad Waseem

    (Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059 Rostock, Germany)

  • Ishfaq Ahmad

    (Center for Climate Research and Development, COMSAT University, Islamabad 45550, Pakistan)

  • Muhammad Fahad

    (Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan)

  • Yasir Niaz

    (Water Management and Agricultural Mechanization Research Center, Centre for Climate Change and Hydrological Modeling Studies, Department of Agricultural Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan)

  • Sikandar Ali

    (Department of Irrigation and Drainage, University of Agriculture, Faisalabad 38000, Pakistan)

Abstract

Impact assessments on climate change are essential for the evaluation and management of irrigation water in farming practices in semi-arid environments. This study was conducted to evaluate climate change impacts on water productivity of maize in farming practices in the Lower Chenab Canal (LCC) system. Two fields of maize were selected and monitored to calibrate and validate the model. A water productivity analysis was performed using the Soil–Water–Atmosphere–Plant (SWAP) model. Baseline climate data (1980–2010) for the study site were acquired from the weather observatory of the Pakistan Meteorological Department (PMD). Future climate change data were acquired from the Hadley Climate model version 3 (HadCM3). Statistical downscaling was performed using the Statistical Downscaling Model (SDSM) for the A2 and B2 scenarios of HadCM3. The water productivity assessment was performed for the midcentury (2040–2069) scenario. The maximum increase in the average maximum temperature (Tmax) and minimum temperature (Tmin) was found in the month of July under the A2 and B2 scenarios. The scenarios show a projected increase of 2.8 °C for Tmax and 3.2 °C for Tmin under A2 as well as 2.7 °C for Tmax and 3.2 °C for Tmin under B2 for the midcentury. Similarly, climate change scenarios showed that temperature is projected to decrease, with the average minimum and maximum temperatures of 7.4 and 6.4 °C under the A2 scenario and 7.7 and 6.8 °C under the B2 scenario in the middle of the century, respectively. However, the highest precipitation will decrease by 56 mm under the A2 and B2 scenarios in the middle of the century for the month of September. The input and output data of the SWAP model were processed in R programming for the easy working of the model. The negative impact of climate change was found under the A2 and B2 scenarios during the midcentury. The maximum decreases in Potential Water Productivity (WPET) and Actual Water Productivity (WPAI) from the baseline period to the midcentury scenario of 1.1 to 0.85 kgm −3 and 0.7 to 0.56 kgm −3 were found under the B2 scenario. Evaluation of irrigation practices directs the water managers in making suitable water management decisions for the improvement of water productivity in the changing climate.

Suggested Citation

  • Muhammad Mohsin Waqas & Syed Hamid Hussain Shah & Usman Khalid Awan & Muhammad Waseem & Ishfaq Ahmad & Muhammad Fahad & Yasir Niaz & Sikandar Ali, 2020. "Evaluating the Impact of Climate Change on Water Productivity of Maize in the Semi-Arid Environment of Punjab, Pakistan," Sustainability, MDPI, vol. 12(9), pages 1-14, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3905-:d:356344
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3905/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3905/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Molden, D., 1997. "Accounting for water use and productivity," IWMI Books, Reports H021374, International Water Management Institute.
    2. Chong-yu Xu, 1999. "Climate Change and Hydrologic Models: A Review of Existing Gaps and Recent Research Developments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 13(5), pages 369-382, October.
    3. David B. Lobell & Graeme L. Hammer & Greg McLean & Carlos Messina & Michael J. Roberts & Wolfram Schlenker, 2013. "The critical role of extreme heat for maize production in the United States," Nature Climate Change, Nature, vol. 3(5), pages 497-501, May.
    4. Molden, David J., 1997. "Accounting for water use and productivity," IWMI Books, International Water Management Institute, number 113623.
    5. Singh, R. & van Dam, J.C. & Feddes, R.A., 2006. "Water productivity analysis of irrigated crops in Sirsa district, India," Agricultural Water Management, Elsevier, vol. 82(3), pages 253-278, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Xueliang & Sharma, Bharat R. & Matin, Mir Abdul & Sharma, Devesh & Gunasinghe, Sarath, 2010. "An assessment of crop water productivity in the Indus and Ganges River Basins: current status and scope for improvement," IWMI Research Reports 112970, International Water Management Institute.
    2. Vazifedoust, M. & van Dam, J.C. & Feddes, R.A. & Feizi, M., 2008. "Increasing water productivity of irrigated crops under limited water supply at field scale," Agricultural Water Management, Elsevier, vol. 95(2), pages 89-102, February.
    3. Mainuddin, Mohammed & Maniruzzaman, Md. & Alam, Md. Mahbubul & Mojid, Mohammad A. & Schmidt, Erik J. & Islam, Md. Towfiqul & Scobie, Michael, 2020. "Water usage and productivity of Boro rice at the field level and their impacts on the sustainable groundwater irrigation in the North-West Bangladesh," Agricultural Water Management, Elsevier, vol. 240(C).
    4. Nektarios N. Kourgialas & Georgios Psarras & Giasemi Morianou & Vassilios Pisinaras & Georgios Koubouris & Nektaria Digalaki & Stella Malliaraki & Katerina Aggelaki & Georgios Motakis & George Arampat, 2022. "Good Agricultural Practices Related to Water and Soil as a Means of Adaptation of Mediterranean Olive Growing to Extreme Climate-Water Conditions," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    5. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    6. Lee, Teang Shui & Haque, M. Aminul & Najim, M.M.M., 2005. "Scheduling the cropping calendar in wet-seeded rice schemes in Malaysia," Agricultural Water Management, Elsevier, vol. 71(1), pages 71-84, January.
    7. Barros, R. & Isidoro, D. & Aragüés, R., 2011. "Long-term water balances in La Violada irrigation district (Spain): I. Sequential assessment and minimization of closing errors," Agricultural Water Management, Elsevier, vol. 102(1), pages 35-45.
    8. Zamani, Omid & Azadi, Hossein & Mortazavi, Seyed Abolghasem & Balali, Hamid & Moghaddam, Saghi Movahhed & Jurik, Lubos, 2021. "The impact of water-pricing policies on water productivity: Evidence of agriculture sector in Iran," Agricultural Water Management, Elsevier, vol. 245(C).
    9. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    10. Venot, Jean-Philippe & Sharma, Bharat R. & Rao, K. V. G. K., 2008. "The lower Krishna Basin trajectory: relationships between basin development and downstream environmental degradation," IWMI Research Reports H041463, International Water Management Institute.
    11. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    12. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    13. Mitter, Hermine & Schmid, Erwin, 2019. "Computing the economic value of climate information for water stress management exemplified by crop production in Austria," Agricultural Water Management, Elsevier, vol. 221(C), pages 430-448.
    14. Dennis Wichelns, 2015. "Water productivity and water footprints are not helpful in determining optimal water allocations or efficient management strategies," Water International, Taylor & Francis Journals, vol. 40(7), pages 1059-1070, November.
    15. Sandhu, Rupinder & Irmak, Suat, 2022. "Effects of subsurface drip-irrigated soybean seeding rates on grain yield, evapotranspiration and water productivity under limited and full irrigation and rainfed conditions," Agricultural Water Management, Elsevier, vol. 267(C).
    16. Ahmad, M.D. & Turral, H. & Nazeer, A., 2009. "Diagnosing irrigation performance and water productivity through satellite remote sensing and secondary data in a large irrigation system of Pakistan," Agricultural Water Management, Elsevier, vol. 96(4), pages 551-564, April.
    17. Cai, Ximing & Yang, Yi-Chen E. & Ringler, Claudia & Zhao, Jianshi & You, Liangzhi, 2011. "Agricultural water productivity assessment for the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 98(8), pages 1297-1306, May.
    18. María Blanco & Benjamin Van Doorslaer & Wolfgang Britz & Heinz-Peter Witzke, 2012. "Exploring the feasibility of integrating water issues into the CAPRI model," JRC Research Reports JRC77058, Joint Research Centre.
    19. Ireneusz Cymes & Ewa Dragańska & Zbigniew Brodziński, 2022. "Potential Possibilities of Using Groundwater for Crop Irrigation in the Context of Climate Change," Agriculture, MDPI, vol. 12(6), pages 1-14, May.
    20. Liu, Junguo & Williams, Jimmy R. & Zehnder, Alexander J.B. & Yang, Hong, 2007. "GEPIC - modelling wheat yield and crop water productivity with high resolution on a global scale," Agricultural Systems, Elsevier, vol. 94(2), pages 478-493, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3905-:d:356344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.