IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i8p3268-d346732.html
   My bibliography  Save this article

Flood Susceptibility and Sediment Transport Analysis of Stromboli Island after the 3 July 2019 Paroxysmal Explosion

Author

Listed:
  • Omar S. Areu-Rangel

    (Instituto de Ingeniería, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico)

  • Rosanna Bonasia

    (CONACYT-Instituto Politécnico Nacional, ESIA, UZ, Miguel bernard, S/N, Edificio de Posgrado, Mexico City 07738, Mexico)

  • Federico Di Traglia

    (Dipartimento di Scienze della Terra, Università degli Studi di Firenze, 50121 Firenze, Italy)

  • Matteo Del Soldato

    (Dipartimento di Scienze della Terra, Università degli Studi di Firenze, 50121 Firenze, Italy)

  • Nicola Casagli

    (Dipartimento di Scienze della Terra, Università degli Studi di Firenze, 50121 Firenze, Italy)

Abstract

On 3 July 2019, Stromboli volcanic island experienced a paroxysmal explosion that triggered wildfires on vegetated areas in the south, southwestern, and eastern part of the island. This study analyzes the runoff and the transport of sediment originating from rainfall, to verify whether the vegetation loss due to wildfire changed the hydrogeological structure of the affected area and the flooding hazard. A preliminary hydrological study was conducted to analyze the superficial runoff due to rainfall. According to local planning, the hydrogeological study and flood risk assessment were carried out for the return periods corresponding to 50, 100, and 300 years. The flooding levels were calculated using the hydrodynamic module of the IBER software. The IBER sediment transport module was applied in a non-stationary regime for erosion and sedimentation analysis. The results showed that the fire caused an increase of the water discharge rates between 0.06 and 0.16 m 2 /s, for the 50 year return period, in the Ginostra inhabited area. The great differences of the flood levels between pre- and post-eruptive scenarios, for the highest return periods, were recognized. The analysis of sediment transport showed that rains could exert an erosion and re-sedimentation effect that would transport from 0.1 m to more than 1 m of re-mobilized material in the Ginostra area, which could cause inconvenience in the inhabited area of the island.

Suggested Citation

  • Omar S. Areu-Rangel & Rosanna Bonasia & Federico Di Traglia & Matteo Del Soldato & Nicola Casagli, 2020. "Flood Susceptibility and Sediment Transport Analysis of Stromboli Island after the 3 July 2019 Paroxysmal Explosion," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3268-:d:346732
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/8/3268/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/8/3268/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. M. Parise & S. Cannon, 2012. "Wildfire impacts on the processes that generate debris flows in burned watersheds," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 217-227, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michalis Diakakis & Spyridon Mavroulis & Emmanuel Vassilakis & Vassiliki Chalvatzi, 2023. "Exploring the Application of a Debris Flow Likelihood Regression Model in Mediterranean Post-Fire Environments, Using Field Observations-Based Validation," Land, MDPI, vol. 12(3), pages 1-18, February.
    2. Raquel Melo & José Luís Zêzere, 2017. "Modeling debris flow initiation and run-out in recently burned areas using data-driven methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1373-1407, September.
    3. Hazra, Devika & Gallagher, Patricia, 2022. "Role of insurance in wildfire risk mitigation," Economic Modelling, Elsevier, vol. 108(C).
    4. Joe Scott & Don Helmbrecht & Matthew Thompson & David Calkin & Kate Marcille, 2012. "Probabilistic assessment of wildfire hazard and municipal watershed exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 707-728, October.
    5. Alexey Desyatkin & Matrena Okoneshnikova & Pavel Fedorov & Alexandra Ivanova & Nikolay Filippov & Roman Desyatkin, 2024. "The Impact of Catastrophic Forest Fires of 2021 on the Light Soils in Central Yakutia," Land, MDPI, vol. 13(8), pages 1-16, July.
    6. Timothy Titus & D. Robertson & J. B. Sankey & L. Mastin & F. Rengers, 2023. "A review of common natural disasters as analogs for asteroid impact effects and cascading hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1355-1402, March.
    7. Nina S. Oakley & Jeremy T. Lancaster & Michael L. Kaplan & F. Martin Ralph, 2017. "Synoptic conditions associated with cool season post-fire debris flows in the Transverse Ranges of southern California," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 327-354, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3268-:d:346732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.