IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i8p3085-d344581.html
   My bibliography  Save this article

Is the Relationship between Transportation and Communications Industries Complementary or Substitutional? An Asian Countries-Based Empirical Analysis Using Input-Output Accounts

Author

Listed:
  • Sungtaek Choi

    (School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA)

  • Sangho Choo

    (Department of Urban Design & Planning, Hongik University, Seoul 04066, Korea)

  • Sujae Kim

    (Department of Urban Planning, Hongik University, Seoul 04066, Korea)

Abstract

The relationship between transportation and communications has been discussed throughout the past decades. This study also investigates that relationship to determine whether they are complementary or substitutive in terms of the industrial perspective, focusing mainly on six Asian countries (China, Japan, India, Korea, Indonesia, and Taiwan). National input-output (I-O) tables from the World Input-Output Database (WIOD) were used to construct research dataset. Each activity in the table was examined and fell into either transportation or communications category when they are related to those categories, thereby establishing six categories: Transportation manufacturing (TM), transportation utilities (TU), communications manufacturing (CM), communications utilities (CU), all transportation (AT), and all communications (AC). To examine the interrelationship between two sectors, direct and total coefficients were calculated for four benchmark years (2000, 2005, 2010, and 2014), then Spearman correlation analysis was conducted using those two coefficient matrices after weighting each coefficient using the economic contribution-based weight (ECBW). As a result, we confirm the predominant complementary relationship between two industries. Most Asian countries present consistent, dominant complementarity in both direct and total analysis. Although there are mixed total effects in Japan and Taiwan, the overall pattern demonstrates remarkable positive relationships. In analyzing the same effects in western countries, we also find the same straightforward positive association between two sectors, mostly in France, the US, and the UK. We believe that our findings can contribute to the literature by providing compelling evidence of the overall trend of a complementary relationship between two industries.

Suggested Citation

  • Sungtaek Choi & Sangho Choo & Sujae Kim, 2020. "Is the Relationship between Transportation and Communications Industries Complementary or Substitutional? An Asian Countries-Based Empirical Analysis Using Input-Output Accounts," Sustainability, MDPI, vol. 12(8), pages 1-21, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3085-:d:344581
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/8/3085/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/8/3085/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    2. Patricia L. Mokhtarian, 2002. "Telecommunications and Travel: The Case for Complementarity," Journal of Industrial Ecology, Yale University, vol. 6(2), pages 43-57, April.
    3. Lee, Taihyeong & Mokhtarian, Patricia L., 2004. "An Input-Output Analysis of the Relationships Between Communications and Travel for Industry," University of California Transportation Center, Working Papers qt55x4h2r2, University of California Transportation Center.
    4. Choi, Sungtaek & Mokhtarian, Patricia L., 2020. "How attractive is it to use the internet while commuting? A work-attitude-based segmentation of Northern California commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 37-50.
    5. Karen J. Horowitz & Mark A. Planting, 2006. "Concepts and Methods of the U.S. Input-Output Accounts," BEA Papers 0066, Bureau of Economic Analysis.
    6. Sangho Choo & Taihyeong Lee & Patricia L. Mokhtarian, 2007. "Relationships Between US Consumer Expenditures on Communications and Transportation Using Almost Ideal Demand System Modeling: 1984--2002," Transportation Planning and Technology, Taylor & Francis Journals, vol. 30(5), pages 431-453, July.
    7. Taihyeong Lee & Patricia Mokhtarian, 2008. "Correlations between industrial demands (direct and total) for communications and transportation in the U.S. economy 1947–1997," Transportation, Springer, vol. 35(1), pages 1-22, January.
    8. Plaut, Pnina O., 1997. "Transportation-communications relationships in industry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(6), pages 419-429, November.
    9. Choo, Sangho & Mokhtarian, Patricia L, 2005. "Do Telecommunications Affect Passenger Travel or Vice Versa? Structural Equation Models of Aggregate U.S. Time Series Data Using Composite Indexes," Institute of Transportation Studies, Working Paper Series qt2zp5b7zv, Institute of Transportation Studies, UC Davis.
    10. Mokhtarian, Patricia L., 1990. "A Typology of Relationships Between Telecommunications And Transportation," University of California Transportation Center, Working Papers qt4rx589m0, University of California Transportation Center.
    11. Malokin, Aliaksandr & Circella, Giovanni & Mokhtarian, Patricia L., 2019. "How do activities conducted while commuting influence mode choice? Using revealed preference models to inform public transportation advantage and autonomous vehicle scenarios," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 82-114.
    12. Schikofsky, Jan & Dannewald, Till & Kowald, Matthias, 2020. "Exploring motivational mechanisms behind the intention to adopt mobility as a service (MaaS): Insights from Germany," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 296-312.
    13. Peng Jing & Hao Huang & Bin Ran & Fengping Zhan & Yuji Shi, 2019. "Exploring the Factors Affecting Mode Choice Intention of Autonomous Vehicle Based on an Extended Theory of Planned Behavior—A Case Study in China," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    14. Cláudia A. Soares Machado & Nicolas Patrick Marie De Salles Hue & Fernando Tobal Berssaneti & José Alberto Quintanilha, 2018. "An Overview of Shared Mobility," Sustainability, MDPI, vol. 10(12), pages 1-21, November.
    15. Selvanathan, E. A. & Selvanathan, Saroja, 1994. "The demand for transport and communication in the United Kingdom and Australia," Transportation Research Part B: Methodological, Elsevier, vol. 28(1), pages 1-9, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiawei Gui & Qunqi Wu, 2020. "Multiple Utility Analyses for Sustainable Public Transport Planning and Management: Evidence from GPS-Equipped Taxi Data in Haikou," Sustainability, MDPI, vol. 12(19), pages 1-46, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choo, Sangho & Mokhtarian, Patricia L., 2007. "Telecommunications and travel demand and supply: Aggregate structural equation models for the US," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(1), pages 4-18, January.
    2. Taihyeong Lee & Patricia Mokhtarian, 2008. "Correlations between industrial demands (direct and total) for communications and transportation in the U.S. economy 1947–1997," Transportation, Springer, vol. 35(1), pages 1-22, January.
    3. Choo, Sangho, 2003. "Aggregate Relationships between Telecommunications and Travel: Structural Equation Modeling of Time Series Data," University of California Transportation Center, Working Papers qt4p78h623, University of California Transportation Center.
    4. Lee, Taihyeong & Mokhtarian, Patricia L., 2004. "An Input-Output Analysis of the Relationships Between Communications and Travel for Industry," University of California Transportation Center, Working Papers qt55x4h2r2, University of California Transportation Center.
    5. Choo, Sangho & Lee, Taihyeong & Mokhtarian, Patricia L, 2006. "Relationships between U.S. Consumer Expenditures on Communications and Travel: 1984-2002," Institute of Transportation Studies, Working Paper Series qt1gm08532, Institute of Transportation Studies, UC Davis.
    6. Lee, Taihyeong & Mokhtarian, Patricia L., 2004. "An Input-Output Analysis of the Relationships Between Communications and Travel for Industry," University of California Transportation Center, Working Papers qt55x4h2r2, University of California Transportation Center.
    7. Bris, Myriam & Pawlak, Jacek & Polak, John W., 2017. "How is ICT use linked to household transport expenditure? A cross-national macro analysis of the influence of home broadband access," Journal of Transport Geography, Elsevier, vol. 60(C), pages 231-242.
    8. Choo, Sangho & Mokhtarian, Patricia L, 2005. "Do Telecommunications Affect Passenger Travel or Vice Versa? Structural Equation Models of Aggregate U.S. Time Series Data Using Composite Indexes," Institute of Transportation Studies, Working Paper Series qt2zp5b7zv, Institute of Transportation Studies, UC Davis.
    9. Ralph Hippe & Damien Demailly & Claude Diebolt, 2022. "The Digital Transition for a Sustainable Mobility Regime? A Long-Run Perspective," Working Papers of BETA 2022-19, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    10. Aguiléra, Anne & Guillot, Caroline & Rallet, Alain, 2012. "Mobile ICTs and physical mobility: Review and research agenda," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 664-672.
    11. Brown, Colby & Balepur, Prashant & Mokhtarian, Patricia L., 2005. "Communication Chains: A Methodology for Assessing the Effects of the Internet on Communication and Travel," University of California Transportation Center, Working Papers qt4cf351bc, University of California Transportation Center.
    12. Lee, Jaehyung & Lee, Euntak & Yun, Jaewoong & Chung, Jin-Hyuk & Kim, Jinhee, 2021. "Latent heterogeneity in autonomous driving preferences and in-vehicle activities by travel distance," Journal of Transport Geography, Elsevier, vol. 94(C).
    13. Kunbo Shi & Long Cheng & Jonas De Vos & Yongchun Yang & Wanpeng Cao & Frank Witlox, 2021. "How does purchasing intangible services online influence the travel to consume these services? A focus on a Chinese context," Transportation, Springer, vol. 48(5), pages 2605-2625, October.
    14. Harsh Shah & Andre L. Carrel & Huyen T. K. Le, 2024. "Impacts of teleworking and online shopping on travel: a tour-based analysis," Transportation, Springer, vol. 51(1), pages 99-127, February.
    15. Pernot, Delphine, 2021. "Internet shopping for Everyday Consumer Goods: An examination of the purchasing and travel practices of click and pickup outlet customers," Research in Transportation Economics, Elsevier, vol. 87(C).
    16. Aliaksandr Malokin & Giovanni Circella & Patricia L. Mokhtarian, 2021. "Do millennials value travel time differently because of productive multitasking? A revealed-preference study of Northern California commuters," Transportation, Springer, vol. 48(5), pages 2787-2823, October.
    17. Julsrud, Tom Erik & Hjorthol, Randi & Denstadli, Jon Martin, 2012. "Business meetings: do new videoconferencing technologies change communication patterns?," Journal of Transport Geography, Elsevier, vol. 24(C), pages 396-403.
    18. Okyere, Dennis Kwadwo & Poku-Boansi, Michael & Adarkwa, Kwasi Kwafo, 2018. "Connecting the dots: The nexus between transport and telecommunication in Ghana," Telecommunications Policy, Elsevier, vol. 42(10), pages 836-844.
    19. Nicholas S. Caros & Jinhua Zhao, 2022. "Preparing urban mobility for the future of work," Papers 2201.01321, arXiv.org.
    20. Petr Matous & Yasuyuki Todo & Ayu Pratiwi, 2015. "The role of motorized transport and mobile phones in the diffusion of agricultural information in Tanggamus Regency, Indonesia," Transportation, Springer, vol. 42(5), pages 771-790, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3085-:d:344581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.