IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p3063-d344040.html
   My bibliography  Save this article

Decision Support Simulation Method for Process Improvement of Electronic Product Testing Systems

Author

Listed:
  • Péter Tamás

    (Institute of Logistics, University of Miskolc, 3515 Miskolc, Hungary)

  • Sándor Tollár

    (Institute of Logistics, University of Miskolc, 3515 Miskolc, Hungary)

  • Béla Illés

    (Institute of Logistics, University of Miskolc, 3515 Miskolc, Hungary)

  • Tamás Bányai

    (Institute of Logistics, University of Miskolc, 3515 Miskolc, Hungary)

  • Ágota Bányai Tóth

    (Institute of Logistics, University of Miskolc, 3515 Miskolc, Hungary)

  • Róbert Skapinyecz

    (Institute of Logistics, University of Miskolc, 3515 Miskolc, Hungary)

Abstract

Spread of the Jidoka concept can be phrased as a trend at the production of electronic products. In most of the cases, with the application of this concept, the development of testing procedures (for quality assurance purposes) of the finished products can be avoided. In those cases, when the production process of the appropriate quality product cannot be implemented safely for the establishment of the product testing process (following the production process), changing the number of variety products, change of requirements concerning the electronic products (e.g., instructions related to energy consumption, noise level) and the variation of the required testing capacity make the modification of the established testing process necessary. The implementation of related plans often leads to problems (e.g., not the appropriate storage area, material flow process or material handling equipment having been chosen). The method of process configuration affects the sustainability, since the poorly established process can lead to additional usage of non-renewable natural resources and unjustified environmental impact. For one of the tools of Industry 4.0, we developed such a state-of-the-art testing method with the use of simulation modelling by which the change of testing process can be effectively examined and evaluated, thus we can prevent the unnecessary planning failures. The application of the developed method is also shown through a case study.

Suggested Citation

  • Péter Tamás & Sándor Tollár & Béla Illés & Tamás Bányai & Ágota Bányai Tóth & Róbert Skapinyecz, 2020. "Decision Support Simulation Method for Process Improvement of Electronic Product Testing Systems," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:3063-:d:344040
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/3063/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/3063/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Angelelli, E. & Arsik, I. & Morandi, V. & Savelsbergh, M. & Speranza, M.G., 2016. "Proactive route guidance to avoid congestion," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 1-21.
    2. Dragan Komljenovic & Vladislav Kecojevic, 2009. "Multi-attribute selection method for materials handling equipment," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 4(2), pages 151-173.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhoopalam, Anirudh Kishore & Agatz, Niels & Zuidwijk, Rob, 2018. "Planning of truck platoons: A literature review and directions for future research," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 212-228.
    2. Amer, Hayder M. & Al-Kashoash, Hayder & Hawes, Matthew & Chaqfeh, Moumena & Kemp, Andrew & Mihaylova, Lyudmila, 2019. "Centralized simulated annealing for alleviating vehicular congestion in smart cities," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 235-248.
    3. Ivana Semanjski & Sidharta Gautama, 2019. "A Collaborative Stakeholder Decision-Making Approach for Sustainable Urban Logistics," Sustainability, MDPI, vol. 11(1), pages 1-11, January.
    4. Angelelli, E. & Morandi, V. & Savelsbergh, M. & Speranza, M.G., 2021. "System optimal routing of traffic flows with user constraints using linear programming," European Journal of Operational Research, Elsevier, vol. 293(3), pages 863-879.
    5. Zhou, Bo & Song, Qiankun & Zhao, Zhenjiang & Liu, Tangzhi, 2020. "A reinforcement learning scheme for the equilibrium of the in-vehicle route choice problem based on congestion game," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    6. Eikenbroek, Oskar A.L. & Still, Georg J. & van Berkum, Eric C., 2022. "Improving the performance of a traffic system by fair rerouting of travelers," European Journal of Operational Research, Elsevier, vol. 299(1), pages 195-207.
    7. Cui, Nan & Chen, Bokui & Zhang, Kai & Zhang, Yi & Liu, Xiaotong & Zhou, Jun, 2019. "Effects of route guidance strategies on traffic emissions in intelligent transportation systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 32-44.
    8. Collins, Mor & Etzioni, Shelly & Ben-Elia, Eran, 2024. "Travel behavior and system dynamics in a simple gamified automated multimodal network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    9. Hu, Xiao-Bing & Zhang, Ming-Kong & Zhang, Qi & Liao, Jian-Qin, 2017. "Co-Evolutionary path optimization by Ripple-Spreading algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 411-432.
    10. Levy, Nadav & Klein, Ido & Ben-Elia, Eran, 2018. "Emergence of cooperation and a fair system optimum in road networks: A game-theoretic and agent-based modelling approach," Research in Transportation Economics, Elsevier, vol. 68(C), pages 46-55.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:3063-:d:344040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.