IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2984-d343014.html
   My bibliography  Save this article

Chemical Denitrification with Mg 0 Particles in Column Systems

Author

Listed:
  • Alessio Siciliano

    (Laboratory of Environmental Sanitary Engineering, Department of Environmental Engineering, University of Calabria, 87036 Rende (CS), Italy)

  • Giulia Maria Curcio

    (Laboratory of Environmental Sanitary Engineering, Department of Environmental Engineering, University of Calabria, 87036 Rende (CS), Italy)

  • Carlo Limonti

    (Laboratory of Environmental Sanitary Engineering, Department of Environmental Engineering, University of Calabria, 87036 Rende (CS), Italy)

Abstract

The removal of nitrate from aqueous environments through zero-valent metallic elements is an attractive technique that has gained increasing interest in recent years. In comparison to other metallic elements, zero-valent magnesium (ZVM) has numerous beneficial aspects. Nevertheless, the use of Mg 0 particles for nitrate reduction in column systems has not been investigated yet. To overcome the lack of research, in the present study, a wide experimental activity was carried out to develop a chemical denitrification process through ZVM in batch column equipment. Several tests were executed to evaluate the effects of recirculation hydraulic velocity, pH, Mg 0 amount, N-NO 3 − initial concentration and temperature on the process performance. The results show that the process efficiency is positively influenced by the recirculation velocity increase. In particular, the optimal condition was detected with a value of 1 m/min. The process pH was identified as the main operating parameter. At pH 3, abatements higher than 86.6% were reached for every initial nitrate concentration tested. In these conditions, nitrogen gas was detected as the main reaction product. The pH increase up to values of 5 and 7 caused a drastic denitrification decline with observed efficiencies below 26%. At pH 3, the ratio (R MN ) between Mg 0 and initial nitrate amount also plays a key role in the treatment performance. A characteristic value of about R MN = 0.333 gMg 0 /mgN-NO 3 − was found with which it is possible to reach the maximum reaction rate. Unexpectedly, the process was negatively affected by the increase in temperature from 20 to 40 °C. At 20 °C, the material showed satisfactory denitrification efficiencies in subsequent reuse cycles. With the optimal R MN ratio, removals up to 90% were detected by reusing the reactive material three times. By means of a kinetic analysis, a mathematical law able to describe the nitrate abatement curves was defined. Moreover, the relation between the observed kinetic constant and the operating parameters was recognized. Finally, the reaction pathways were proposed and the corrosion reaction products formed during the treatment were identified.

Suggested Citation

  • Alessio Siciliano & Giulia Maria Curcio & Carlo Limonti, 2020. "Chemical Denitrification with Mg 0 Particles in Column Systems," Sustainability, MDPI, vol. 12(7), pages 1-26, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2984-:d:343014
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2984/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2984/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alessio Siciliano & Maria Assuntina Stillitano & Carlo Limonti, 2016. "Energetic Valorization of Wet Olive Mill Wastes through a Suitable Integrated Treatment: H 2 O 2 with Lime and Anaerobic Digestion," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julio Berbel & Alejandro Posadillo, 2018. "Review and Analysis of Alternatives for the Valorisation of Agro-Industrial Olive Oil By-Products," Sustainability, MDPI, vol. 10(1), pages 1-9, January.
    2. Alessio Siciliano & Carlo Limonti & Sanjeet Mehariya & Antonio Molino & Vincenza Calabrò, 2018. "Biofuel Production and Phosphorus Recovery through an Integrated Treatment of Agro-Industrial Waste," Sustainability, MDPI, vol. 11(1), pages 1-17, December.
    3. Alessio Siciliano & Carlo Limonti & Giulia Maria Curcio & Raffaele Molinari, 2020. "Advances in Struvite Precipitation Technologies for Nutrients Removal and Recovery from Aqueous Waste and Wastewater," Sustainability, MDPI, vol. 12(18), pages 1-35, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2984-:d:343014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.