IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2634-d337404.html
   My bibliography  Save this article

Clean and Green Urban Water Bodies Benefit Nocturnal Flying Insects and Their Predators, Insectivorous Bats

Author

Listed:
  • Tanja M. Straka

    (School of BioSciences, The University of Melbourne, Parkville VIC 3010, Australia
    Ecosystem Science/Plant Ecology, Department of Ecology, Technische Universität Berlin, 12165 Berlin, Germany
    Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany)

  • Pia E. Lentini

    (School of BioSciences, The University of Melbourne, Parkville VIC 3010, Australia)

  • Linda F. Lumsden

    (Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, Heidelberg VIC 3084, Australia)

  • Sascha Buchholz

    (Ecosystem Science/Plant Ecology, Department of Ecology, Technische Universität Berlin, 12165 Berlin, Germany
    Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany)

  • Brendan A. Wintle

    (School of BioSciences, The University of Melbourne, Parkville VIC 3010, Australia)

  • Rodney van der Ree

    (School of BioSciences, The University of Melbourne, Parkville VIC 3010, Australia
    Ecology and Infrastructure International, Wantirna VIC 3152, Australia)

Abstract

Nocturnal arthropods form the prey base for many predators and are an integral part of complex food webs. However, there is limited understanding of the mechanisms influencing invertebrates at urban water bodies and the potential flow-on effects to their predators. This study aims to: (i) understand the importance of standing water bodies for nocturnal flying insect orders, including the landscape- and local-scale factors driving these patterns; and (ii) quantify the relationship between insects and insectivorous bats. We investigated nocturnal flying insects and insectivorous bats simultaneously at water bodies (n = 58) and non-water body sites (n = 35) using light traps and acoustic recorders in Melbourne, Australia. At the landscape scale, we found that the presence of water and high levels of surrounding greenness were important predictors for some insect orders. At the water body scale, low levels of sediment pollutants, increased riparian tree cover and water body size supported higher insect order richness and a greater abundance of Coleopterans and Trichopterans, respectively. Most bat species had a positive response to a high abundance of Lepidopterans, confirming the importance of this order in the diet of insectivorous bats. Fostering communities of nocturnal insects in urban environments can provide opportunities for enhancing the prey base of urban nocturnal insectivores.

Suggested Citation

  • Tanja M. Straka & Pia E. Lentini & Linda F. Lumsden & Sascha Buchholz & Brendan A. Wintle & Rodney van der Ree, 2020. "Clean and Green Urban Water Bodies Benefit Nocturnal Flying Insects and Their Predators, Insectivorous Bats," Sustainability, MDPI, vol. 12(7), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2634-:d:337404
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2634/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2634/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    2. Eva Knop & Leana Zoller & Remo Ryser & Christopher Gerpe & Maurin Hörler & Colin Fontaine, 2017. "Artificial light at night as a new threat to pollination," Nature, Nature, vol. 548(7666), pages 206-209, August.
    3. Simon G. Potts & Vera Imperatriz-Fonseca & Hien T. Ngo & Marcelo A. Aizen & Jacobus C. Biesmeijer & Thomas D. Breeze & Lynn V. Dicks & Lucas A. Garibaldi & Rosemary Hill & Josef Settele & Adam J. Vanb, 2016. "Safeguarding pollinators and their values to human well-being," Nature, Nature, vol. 540(7632), pages 220-229, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ingo Kowarik & Leonie K. Fischer & Dave Kendal, 2020. "Biodiversity Conservation and Sustainable Urban Development," Sustainability, MDPI, vol. 12(12), pages 1-8, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jens Schirmel, 2021. "COVID-19 Pandemic Turns Life-Science Students into “Citizen Scientists”: Data Indicate Multiple Negative Effects of Urbanization on Biota," Sustainability, MDPI, vol. 13(5), pages 1-16, March.
    2. Johannes Uhler & Sarah Redlich & Jie Zhang & Torsten Hothorn & Cynthia Tobisch & Jörg Ewald & Simon Thorn & Sebastian Seibold & Oliver Mitesser & Jérôme Morinière & Vedran Bozicevic & Caryl S. Benjami, 2021. "Relationship of insect biomass and richness with land use along a climate gradient," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    4. Raymond Hernandez & Elizabeth A. Pyatak & Cheryl L. P. Vigen & Haomiao Jin & Stefan Schneider & Donna Spruijt-Metz & Shawn C. Roll, 2021. "Understanding Worker Well-Being Relative to High-Workload and Recovery Activities across a Whole Day: Pilot Testing an Ecological Momentary Assessment Technique," IJERPH, MDPI, vol. 18(19), pages 1-17, October.
    5. Christopher Hassall & Michael Nisbet & Evan Norcliffe & He Wang, 2024. "The Potential Health Benefits of Urban Tree Planting Suggested through Immersive Environments," Land, MDPI, vol. 13(3), pages 1-12, February.
    6. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Elisabeth Beckmann & Lukas Olbrich & Joseph Sakshaug, 2024. "Multivariate assessment of interviewer-related errors in a cross-national economic survey (Lukas Olbrich, Elisabeth Beckmann, Joseph W. Sakshaug)," Working Papers 253, Oesterreichische Nationalbank (Austrian Central Bank).
    8. F J Heather & D Z Childs & A M Darnaude & J L Blanchard, 2018. "Using an integral projection model to assess the effect of temperature on the growth of gilthead seabream Sparus aurata," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-19, May.
    9. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Morán-Ordóñez, Alejandra & Ameztegui, Aitor & De Cáceres, Miquel & de-Miguel, Sergio & Lefèvre, François & Brotons, Lluís & Coll, Lluís, 2020. "Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios," Ecosystem Services, Elsevier, vol. 45(C).
    11. Jack McDonnell & Thomas McKenna & Kathryn A. Yurkonis & Deirdre Hennessy & Rafael Andrade Moral & Caroline Brophy, 2023. "A Mixed Model for Assessing the Effect of Numerous Plant Species Interactions on Grassland Biodiversity and Ecosystem Function Relationships," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 1-19, March.
    12. Ana Pinto & Tong Yin & Marion Reichenbach & Raghavendra Bhatta & Pradeep Kumar Malik & Eva Schlecht & Sven König, 2020. "Enteric Methane Emissions of Dairy Cattle Considering Breed Composition, Pasture Management, Housing Conditions and Feeding Characteristics along a Rural-Urban Gradient in a Rising Megacity," Agriculture, MDPI, vol. 10(12), pages 1-18, December.
    13. Damian M. Herz & Manuel Bange & Gabriel Gonzalez-Escamilla & Miriam Auer & Keyoumars Ashkan & Petra Fischer & Huiling Tan & Rafal Bogacz & Muthuraman Muthuraman & Sergiu Groppa & Peter Brown, 2022. "Dynamic control of decision and movement speed in the human basal ganglia," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Kathrin Stenchly & Marc Victor Hansen & Katharina Stein & Andreas Buerkert & Wilhelm Loewenstein, 2018. "Income Vulnerability of West African Farming Households to Losses in Pollination Services: A Case Study from Ouagadougou, Burkina Faso," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    15. Dongyan Liu & Chongran Zhou & John K. Keesing & Oscar Serrano & Axel Werner & Yin Fang & Yingjun Chen & Pere Masque & Janine Kinloch & Aleksey Sadekov & Yan Du, 2022. "Wildfires enhance phytoplankton production in tropical oceans," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    16. Zhaogeng Yang & Yanhui Li & Peijin Hu & Jun Ma & Yi Song, 2020. "Prevalence of Anemia and its Associated Factors among Chinese 9-, 12-, and 14-Year-Old Children: Results from 2014 Chinese National Survey on Students Constitution and Health," IJERPH, MDPI, vol. 17(5), pages 1-10, February.
    17. Dong Sheng & Siyuan Jing & Xueqing He & Alexandra-Maria Klein & Heinz-R. Köhler & Thomas C. Wanger, 2024. "Plastic pollution in agricultural landscapes: an overlooked threat to pollination, biocontrol and food security," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Marco Lopez-Cruz & Fernando M. Aguate & Jacob D. Washburn & Natalia Leon & Shawn M. Kaeppler & Dayane Cristina Lima & Ruijuan Tan & Addie Thompson & Laurence Willard Bretonne & Gustavo los Campos, 2023. "Leveraging data from the Genomes-to-Fields Initiative to investigate genotype-by-environment interactions in maize in North America," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    19. Baumann, Elias & Kern, Jana & Lessmann, Stefan, 2019. "Usage Continuance in Software-as-a-Service," IRTG 1792 Discussion Papers 2019-005, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    20. Alexandra M. Cheney & Stephanann M. Costello & Nicholas V. Pinkham & Annie Waldum & Susan C. Broadaway & Maria Cotrina-Vidal & Marc Mergy & Brian Tripet & Douglas J. Kominsky & Heather M. Grifka-Walk , 2023. "Gut microbiome dysbiosis drives metabolic dysfunction in Familial dysautonomia," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2634-:d:337404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.