IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2553-d336377.html
   My bibliography  Save this article

Ecological Suitability of Island Development Based on Ecosystem Services Value, Biocapacity and Ecological Footprint: A Case Study of Pingtan Island, Fujian, China

Author

Listed:
  • Weiheng Zheng

    (State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
    Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China)

  • Feng Cai

    (Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China)

  • Shenliang Chen

    (State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China)

  • Jun Zhu

    (Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China)

  • Hongshuai Qi

    (Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China)

  • Shaohua Zhao

    (Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China)

  • Jianhui Liu

    (Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China)

Abstract

The ecological environment and resource endowment of an island are more vulnerable compared to the mainland, and special assessment and measurement of the ecological suitability for development are significant. Pingtan Island (Fujian, China) was taken as a case study. Changes in ecosystem services value and the profit-and-loss balance between ecological footprint and biocapacity were assessed using land use/cover changes based on remote-sensing images taken in 2009, 2014 and 2017, and the ecological suitability of development was measured. Results show that island development led to a decrease in the ecosystem services value and an increase in ecological footprint and biocapacity. The key ecological factors restricting the scale of island development are topography, vegetation with special functions and freshwater. Biocapacity of islands can increase not only by changing from lower-yield land types to higher-yield construction land types but also by external investment. A new measurement framework was proposed that simply and clearly reveals the ecological suitability of island development and the underlying key constraints.

Suggested Citation

  • Weiheng Zheng & Feng Cai & Shenliang Chen & Jun Zhu & Hongshuai Qi & Shaohua Zhao & Jianhui Liu, 2020. "Ecological Suitability of Island Development Based on Ecosystem Services Value, Biocapacity and Ecological Footprint: A Case Study of Pingtan Island, Fujian, China," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2553-:d:336377
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2553/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2553/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fisher, Brendan & Turner, R. Kerry & Morling, Paul, 2009. "Defining and classifying ecosystem services for decision making," Ecological Economics, Elsevier, vol. 68(3), pages 643-653, January.
    2. World Commission on Environment and Development,, 1987. "Our Common Future," OUP Catalogue, Oxford University Press, number 9780192820808.
    3. Yue, Dongxia & Xu, Xiaofeng & Hui, Cang & Xiong, Youcai & Han, Xuemei & Ma, Jinhui, 2011. "Biocapacity supply and demand in Northwestern China: A spatial appraisal of sustainability," Ecological Economics, Elsevier, vol. 70(5), pages 988-994, March.
    4. Michelle A. Mycoo, 2018. "Achieving SDG 6: water resources sustainability in Caribbean Small Island Developing States through improved water governance," Natural Resources Forum, Blackwell Publishing, vol. 42(1), pages 54-68, February.
    5. Toderoiu, Filon, 2010. "Ecological Footprint And Biocapacity – Methodology And Regional And National Dimensions," Agricultural Economics and Rural Development, Institute of Agricultural Economics, vol. 7(2), pages 213-238.
    6. Qingsheng Li & Jinliang Huang & Cui Wang & Heshan Lin & Jiwei Zhang & Jinlong Jiang & Bingkun Wang, 2017. "Land Development Suitability Evaluation of Pingtan Island Based on Scenario Analysis and Landscape Ecological Quality Evaluation," Sustainability, MDPI, vol. 9(7), pages 1-15, July.
    7. Marlia M. Hanafiah & Mark A.J. Huijbregts & A. Jan Hendriks, 2010. "The Influence of Nutrients and Non-CO 2 Greenhouse Gas Emissions on the Ecological Footprint of Products," Sustainability, MDPI, vol. 2(4), pages 1-17, April.
    8. Ian Bateman & Georgina Mace & Carlo Fezzi & Giles Atkinson & Kerry Turner, 2011. "Economic Analysis for Ecosystem Service Assessments," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 177-218, February.
    9. McDonald, Garry W. & Patterson, Murray G., 2004. "Ecological Footprints and interdependencies of New Zealand regions," Ecological Economics, Elsevier, vol. 50(1-2), pages 49-67, September.
    10. Turner, R. Kerry & Paavola, Jouni & Cooper, Philip & Farber, Stephen & Jessamy, Valma & Georgiou, Stavros, 2003. "Valuing nature: lessons learned and future research directions," Ecological Economics, Elsevier, vol. 46(3), pages 493-510, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valencia Torres, Angélica & Tiwari, Chetan & Atkinson, Samuel F., 2021. "Progress in ecosystem services research: A guide for scholars and practitioners," Ecosystem Services, Elsevier, vol. 49(C).
    2. Ling Xiao & Li Cui & Qun’ou Jiang & Meilin Wang & Lidan Xu & Haiming Yan, 2020. "Spatial Structure of a Potential Ecological Network in Nanping, China, Based on Ecosystem Service Functions," Land, MDPI, vol. 9(10), pages 1-18, October.
    3. Minxian Luo & Lifang Xiao & Xuhui Chen & Kaiqin Lin & Bao Liu & Zongming He & Jinfu Liu & Shiqun Zheng, 2022. "Invasive Alien Plants and Invasion Risk Assessment on Pingtan Island," Sustainability, MDPI, vol. 14(2), pages 1-16, January.
    4. Yanru Wang & Xiaojuan Zhang & Peihao Peng, 2021. "Spatio-Temporal Changes of Land-Use/Land Cover Change and the Effects on Ecosystem Service Values in Derong County, China, from 1992–2018," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    5. María Andreína Moros-Ochoa & Gilmer Yovani Castro-Nieto & Anderson Quintero-Español & Carolina Llorente-Portillo, 2022. "Forecasting Biocapacity and Ecological Footprint at a Worldwide Level to 2030 Using Neural Networks," Sustainability, MDPI, vol. 14(17), pages 1-14, August.
    6. Yugang He, 2022. "Renewable and Non-Renewable Energy Consumption and Trade Policy: Do They Matter for Environmental Sustainability?," Energies, MDPI, vol. 15(10), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McVittie, Alistair & Norton, Lisa & Martin-Ortega, Julia & Siameti, Ioanna & Glenk, Klaus & Aalders, Inge, 2015. "Operationalizing an ecosystem services-based approach using Bayesian Belief Networks: An application to riparian buffer strips," Ecological Economics, Elsevier, vol. 110(C), pages 15-27.
    2. Yamaguchi, Rintaro, 2020. "Available capital, utilized capital, and shadow prices in inclusive wealth accounting," Ecological Economics, Elsevier, vol. 169(C).
    3. Brück, Maria & Abson, David J. & Fischer, Joern & Schultner, Jannik, 2022. "Broadening the scope of ecosystem services research: Disaggregation as a powerful concept for sustainable natural resource management," Ecosystem Services, Elsevier, vol. 53(C).
    4. Drupp, Moritz A. & Baumgärtner, Stefan & Meyer, Moritz & Quaas, Martin F. & von Wehrden, Henrik, 2020. "Between Ostrom and Nordhaus: The research landscape of sustainability economics," Ecological Economics, Elsevier, vol. 172(C).
    5. Johann Audrain & Mateo Cordier & Sylvie Faucheux & Martin O’Connor, 2013. "Écologie territoriale et indicateurs pour un développement durable de la métropole parisienne," Revue d'économie régionale et urbaine, Armand Colin, vol. 0(3), pages 523-559.
    6. Hooper, Tara & Cooper, Philip & Hunt, Alistair & Austen, Melanie, 2014. "A methodology for the assessment of local-scale changes in marine environmental benefits and its application," Ecosystem Services, Elsevier, vol. 8(C), pages 65-74.
    7. Kosoy, Nicolás & Corbera, Esteve, 2010. "Payments for ecosystem services as commodity fetishism," Ecological Economics, Elsevier, vol. 69(6), pages 1228-1236, April.
    8. Jean-François Ruault & Alice Dupré La Tour & André Evette & Sandrine Allain & Jean-Marc Callois, 2022. "A biodiversity-employment framework to protect biodiversity," Post-Print hal-03365820, HAL.
    9. Glenk, Klaus & Schaafsma, Marije & Moxey, Andrew & Martin-Ortega, Julia & Hanley, Nick, 2014. "A framework for valuing spatially targeted peatland restoration," Ecosystem Services, Elsevier, vol. 9(C), pages 20-33.
    10. Debrupa Chakraborty & Joyashree Roy, 2015. "Ecological footprint of paperboard and paper production unit in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 17(4), pages 909-921, August.
    11. Sattler, Claudia & Trampnau, Susanne & Schomers, Sarah & Meyer, Claas & Matzdorf, Bettina, 2013. "Multi-classification of payments for ecosystem services: How do classification characteristics relate to overall PES success?," Ecosystem Services, Elsevier, vol. 6(C), pages 31-45.
    12. Heink, Ulrich & Jax, Kurt, 2019. "Going Upstream — How the Purpose of a Conceptual Framework for Ecosystem Services Determines Its Structure," Ecological Economics, Elsevier, vol. 156(C), pages 264-271.
    13. White, Thomas J., 2007. "Sharing resources: The global distribution of the Ecological Footprint," Ecological Economics, Elsevier, vol. 64(2), pages 402-410, December.
    14. Hansjürgens, Bernd & Schröter-Schlaack, Christoph & Berghöfer, Augustin & Lienhoop, Nele, 2017. "Justifying social values of nature: Economic reasoning beyond self-interested preferences," Ecosystem Services, Elsevier, vol. 23(C), pages 9-17.
    15. Katarina Haugen, 2016. "Contested Lands? Dissonance and Common Ground in Stakeholder Views on Forest Values," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 107(4), pages 421-434, September.
    16. Vedel, Suzanne Elizabeth & Thorsen, Bo Jellesmark & Jacobsen, Jette Bredahl, 2009. "First-movers, non-movers, and social gains from subsidising entry in markets for nature-based recreational goods," Ecological Economics, Elsevier, vol. 68(8-9), pages 2363-2371, June.
    17. Ruijs, A. & Wossink, A. & Kortelainen, M. & Alkemade, R. & Schulp, C.J.E., 2013. "Trade-off analysis of ecosystem services in Eastern Europe," Ecosystem Services, Elsevier, vol. 4(C), pages 82-94.
    18. Watson, Stephen C.L. & Paterson, David M. & Queirós, Ana M. & Rees, Andrew P. & Stephens, Nicholas & Widdicombe, Stephen & Beaumont, Nicola J., 2016. "A conceptual framework for assessing the ecosystem service of waste remediation: In the marine environment," Ecosystem Services, Elsevier, vol. 20(C), pages 69-81.
    19. Ruckelshaus, Mary & McKenzie, Emily & Tallis, Heather & Guerry, Anne & Daily, Gretchen & Kareiva, Peter & Polasky, Stephen & Ricketts, Taylor & Bhagabati, Nirmal & Wood, Spencer A. & Bernhardt, Joanna, 2015. "Notes from the field: Lessons learned from using ecosystem service approaches to inform real-world decisions," Ecological Economics, Elsevier, vol. 115(C), pages 11-21.
    20. Browne, David & O'Regan, Bernadette & Moles, Richard, 2012. "Comparison of energy flow accounting, energy flow metabolism ratio analysis and ecological footprinting as tools for measuring urban sustainability: A case-study of an Irish city-region," Ecological Economics, Elsevier, vol. 83(C), pages 97-107.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2553-:d:336377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.