IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i5p1980-d328695.html
   My bibliography  Save this article

Mapping Urbanization and Evaluating Its Possible Impacts on Stream Water Quality in Chattanooga, Tennessee, Using GIS and Remote Sensing

Author

Listed:
  • Jonah Hall

    (Skytec LLC, Chattanooga, TN 37415, USA
    Department of Biology, Geology and Environmental Science, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA)

  • A. K. M. Azad Hossain

    (Department of Biology, Geology and Environmental Science, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA)

Abstract

Impervious surfaces (IS) produced by urbanization can facilitate pollutants’ movement to nearby water bodies through stormwater. This study mapped and estimated the IS changes in Chattanooga, Tennessee, using satellite imagery acquired in 1986 and 2016. A model was developed utilizing the Normalized Difference Vegetation Index coupled with density slicing to detect and map urbanization through IS growth. Urban growth was quantified at USGS HUC12 watershed level including stream riparian areas. The obtained results show a net growth of 45.12 km 2 of IS with a heterogeneous distribution. About 9.96 km 2 of this growth is within 90 m of streams, about 6% of the study site’s land cover. The Lower South Chickamauga Creek watershed experienced the largest urban growth with a change from 24.2 to 48.5 km 2 . Using the riparian zone percent imperviousness, a stream risk assessment model was developed to evaluate potential stream impairment due to this growth. Approximately 87, 131, and 203 km lengths of streams identified as potentially at high, very high, and extreme risks, respectively, to be impaired due to urban growth from the last 30 years. These findings would benefit to proactively implement sustainable management plans for the streams near rapidly urbanizing areas in the study site.

Suggested Citation

  • Jonah Hall & A. K. M. Azad Hossain, 2020. "Mapping Urbanization and Evaluating Its Possible Impacts on Stream Water Quality in Chattanooga, Tennessee, Using GIS and Remote Sensing," Sustainability, MDPI, vol. 12(5), pages 1-46, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1980-:d:328695
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/5/1980/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/5/1980/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zipper, Samuel C. & Soylu, Mehmet Evren & Kucharik, Christopher J. & Loheide II, Steven P., 2017. "Quantifying indirect groundwater-mediated effects of urbanization on agroecosystem productivity using MODFLOW-AgroIBIS (MAGI), a complete critical zone model," Ecological Modelling, Elsevier, vol. 359(C), pages 201-219.
    2. Ling Zhang & Yehua Dennis Wei & Ran Meng, 2017. "Spatiotemporal Dynamics and Spatial Determinants of Urban Growth in Suzhou, China," Sustainability, MDPI, vol. 9(3), pages 1-22, March.
    3. Li, Baizhan & Yao, Runming, 2009. "Urbanisation and its impact on building energy consumption and efficiency in China," Renewable Energy, Elsevier, vol. 34(9), pages 1994-1998.
    4. Liddle, Brantley, 2014. "Impact of population, age structure, and urbanization on carbon emissions/energy consumption: Evidence from macro-level, cross-country analyses," MPRA Paper 61306, University Library of Munich, Germany.
    5. Sylvia Szabo, 2016. "Urbanisation and Food Insecurity Risks: Assessing the Role of Human Development," Oxford Development Studies, Taylor & Francis Journals, vol. 44(1), pages 28-48, January.
    6. Andrew MacLachlan & Eloise Biggs & Gareth Roberts & Bryan Boruff, 2017. "Urban Growth Dynamics in Perth, Western Australia: Using Applied Remote Sensing for Sustainable Future Planning," Land, MDPI, vol. 6(1), pages 1-14, January.
    7. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiting Su & Jing Li & Dongchuan Wang & Jiabao Yue & Xingguang Yan, 2022. "Spatio-Temporal Synergy between Urban Built-Up Areas and Poverty Transformation in Tibet," Sustainability, MDPI, vol. 14(14), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lars Sorge & Anne Neumann, 2019. "The Impact of Population, Affluence, Technology, and Urbanization on CO2 Emissions across Income Groups," Discussion Papers of DIW Berlin 1812, DIW Berlin, German Institute for Economic Research.
    2. Islam, Md. Monirul & Irfan, Muhammad & Shahbaz, Muhammad & Vo, Xuan Vinh, 2022. "Renewable and non-renewable energy consumption in Bangladesh: The relative influencing profiles of economic factors, urbanization, physical infrastructure and institutional quality," Renewable Energy, Elsevier, vol. 184(C), pages 1130-1149.
    3. Opoku, Eric Evans Osei & Dogah, Kingsley E. & Aluko, Olufemi Adewale, 2022. "The contribution of human development towards environmental sustainability," Energy Economics, Elsevier, vol. 106(C).
    4. Xu, Aiting & Song, Miaoyuan & Wu, Yunguang & Luo, Yifan & Zhu, Yuhan & Qiu, Keyang, 2024. "Effects of new urbanization on China's carbon emissions: A quasi-natural experiment based on the improved PSM-DID model," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    5. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
    6. Vélez-Henao, Johan-Andrés & Font Vivanco, David & Hernández-Riveros, Jesús-Antonio, 2019. "Technological change and the rebound effect in the STIRPAT model: A critical view," Energy Policy, Elsevier, vol. 129(C), pages 1372-1381.
    7. Wang, Zhaohua & Rasool, Yasir & Zhang, Bin & Ahmed, Zahoor & Wang, Bo, 2020. "Dynamic linkage among industrialisation, urbanisation, and CO2 emissions in APEC realms: Evidence based on DSUR estimation," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 382-389.
    8. Koçak, Emrah & Önderol, Seyit & Khan, Kamran, 2021. "Structural change, modernization, total factor productivity, and natural resources sustainability: An assessment with quantile and non-quantile estimators," Resources Policy, Elsevier, vol. 74(C).
    9. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2019. "Modelling dynamic impacts of urbanization on disaggregated energy consumption in China: A spatial Durbin modelling and decomposition approach," Energy Policy, Elsevier, vol. 133(C).
    10. Adams, Samuel & Klobodu, Edem Kwame Mensah, 2017. "Urbanization, democracy, bureaucratic quality, and environmental degradation," Journal of Policy Modeling, Elsevier, vol. 39(6), pages 1035-1051.
    11. Yuan, Xiao-Chen & Sun, Xun & Zhao, Weigang & Mi, Zhifu & Wang, Bing & Wei, Yi-Ming, 2017. "Forecasting China’s regional energy demand by 2030: A Bayesian approach," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 85-95.
    12. Su, Min & Wang, Qiang & Li, Rongrong & Wang, Lili, 2022. "Per capita renewable energy consumption in 116 countries: The effects of urbanization, industrialization, GDP, aging, and trade openness," Energy, Elsevier, vol. 254(PB).
    13. Pengfei Sheng & Yaping He & Xiaohui Guo, 2017. "The impact of urbanization on energy consumption and efficiency," Energy & Environment, , vol. 28(7), pages 673-686, November.
    14. Johan-Andrés Vélez-Henao, 2020. "Does urbanization boost environmental impacts in Colombia? An extended STIRPAT–LCA approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(3), pages 851-866, June.
    15. Wang, Shaojian & Xie, Zihan & Wu, Rong & Feng, Kuishang, 2022. "How does urbanization affect the carbon intensity of human well-being? A global assessment," Applied Energy, Elsevier, vol. 312(C).
    16. Mehmet Balcilar & Daberechi Chikezie Ekwueme & Hakki Ciftci, 2023. "Assessing the Effects of Natural Resource Extraction on Carbon Emissions and Energy Consumption in Sub-Saharan Africa: A STIRPAT Model Approach," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    17. Ehigiamusoe, Kizito Uyi & Lean, Hooi Hooi & Smyth, Russell, 2020. "The moderating role of energy consumption in the carbon emissions-income nexus in middle-income countries," Applied Energy, Elsevier, vol. 261(C).
    18. Casey, Gregory & Galor, Oded, 2017. "Is faster economic growth compatible with reductions in carbon emissions? The role of diminished population growth," MPRA Paper 76164, University Library of Munich, Germany.
    19. Li, Menglin & Yin, Long & Yan, Mei & Wu, Jingda & He, Hongwe & Jia, Chunchun, 2024. "Hierarchical intelligent energy-saving control strategy for fuel cell hybrid electric buses based on traffic flow predictions," Energy, Elsevier, vol. 304(C).
    20. Zhenkai Yang & Mei-Chih Wang & Tsangyao Chang & Wing-Keung Wong & Fangjhy Li, 2022. "Which Factors Determine CO 2 Emissions in China? Trade Openness, Financial Development, Coal Consumption, Economic Growth or Urbanization: Quantile Granger Causality Test," Energies, MDPI, vol. 15(7), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1980-:d:328695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.