IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v127y2017icp85-95.html
   My bibliography  Save this article

Forecasting China’s regional energy demand by 2030: A Bayesian approach

Author

Listed:
  • Yuan, Xiao-Chen
  • Sun, Xun
  • Zhao, Weigang
  • Mi, Zhifu
  • Wang, Bing
  • Wei, Yi-Ming

Abstract

China has been the largest energy consumer in the world, and its future energy demand is of concern to policy makers. With the data from 30 provinces during 1995–2012, this study employs a hierarchical Bayesian approach to present the probabilistic forecasts of energy demand at the provincial and national levels. The results show that the hierarchical Bayesian approach is effective for energy forecasting by taking model uncertainty, regional heterogeneity, and cross-sectional dependence into account. The eastern and central areas would peak their energy demand in all the scenarios, while the western area would continue to increase its demand in the high growth scenario. For the country as a whole, the maximum energy demand could appear before 2030, reaching 4.97/5.25 billion tons of standard coal equivalent in the low/high growth scenario. However, rapid economic development would keep national energy demand growing. The proposed Bayesian model also serves as an input for the development of effective energy policies. The analysis suggests that most western provinces still have great potential for energy intensity reduction. The energy-intensive industries should be cut down to improve energy efficiency, and the development of renewable energy is essential.

Suggested Citation

  • Yuan, Xiao-Chen & Sun, Xun & Zhao, Weigang & Mi, Zhifu & Wang, Bing & Wei, Yi-Ming, 2017. "Forecasting China’s regional energy demand by 2030: A Bayesian approach," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 85-95.
  • Handle: RePEc:eee:recore:v:127:y:2017:i:c:p:85-95
    DOI: 10.1016/j.resconrec.2017.08.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344917302550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2017.08.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamzacebi, Coskun & Es, Huseyin Avni, 2014. "Forecasting the annual electricity consumption of Turkey using an optimized grey model," Energy, Elsevier, vol. 70(C), pages 165-171.
    2. Tsai, Miao-Shan & Chang, Ssu-Li, 2015. "Taiwan’s 2050 low carbon development roadmap: An evaluation with the MARKAL model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 178-191.
    3. Perry Sadorsky, 2014. "The Effect of Urbanization and Industrialization on Energy Use in Emerging Economies: Implications for Sustainable Development," American Journal of Economics and Sociology, Wiley Blackwell, vol. 73(2), pages 392-409, April.
    4. Hao, Yu & Zhang, Zong-Yong & Liao, Hua & Wei, Yi-Ming, 2015. "China’s farewell to coal: A forecast of coal consumption through 2020," Energy Policy, Elsevier, vol. 86(C), pages 444-455.
    5. Ünler, Alper, 2008. "Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025," Energy Policy, Elsevier, vol. 36(6), pages 1937-1944, June.
    6. Jiang, Zhujun & Lin, Boqiang, 2012. "China's energy demand and its characteristics in the industrialization and urbanization process," Energy Policy, Elsevier, vol. 49(C), pages 608-615.
    7. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    8. Yoo, Seung-Hoon & Lee, Joo-Suk, 2010. "Electricity consumption and economic growth: A cross-country analysis," Energy Policy, Elsevier, vol. 38(1), pages 622-625, January.
    9. Al-mulali, Usama & Binti Che Sab, Che Normee & Fereidouni, Hassan Gholipour, 2012. "Exploring the bi-directional long run relationship between urbanization, energy consumption, and carbon dioxide emission," Energy, Elsevier, vol. 46(1), pages 156-167.
    10. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    11. Yoo, Seung-Hoon & Kwak, So-Yoon, 2010. "Electricity consumption and economic growth in seven South American countries," Energy Policy, Elsevier, vol. 38(1), pages 181-188, January.
    12. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    13. Li, Na & Zhang, Xiaoling & Shi, Minjun & Zhou, Shenglv, 2017. "The prospects of China’s long-term economic development and CO2 emissions under fossil fuel supply constraints," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 11-22.
    14. Kumar, Subhash, 2016. "Assessment of renewables for energy security and carbon mitigation in Southeast Asia: The case of Indonesia and Thailand," Applied Energy, Elsevier, vol. 163(C), pages 63-70.
    15. Hua Liao & Jia-Wei Cai & Dong-Wei Yang & Yi-Ming Wei, 2016. "Why did the historical energy forecasting succeed or fail? A case study on IEA¡¯s projection," CEEP-BIT Working Papers 92, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    16. Liddle, Brantley, 2014. "Impact of population, age structure, and urbanization on carbon emissions/energy consumption: Evidence from macro-level, cross-country analyses," MPRA Paper 61306, University Library of Munich, Germany.
    17. Liao, Hua & Cai, Jia-Wei & Yang, Dong-Wei & Wei, Yi-Ming, 2016. "Why did the historical energy forecasting succeed or fail? A case study on IEA's projection," Technological Forecasting and Social Change, Elsevier, vol. 107(C), pages 90-96.
    18. Zhu, Bangzhu & Wang, Kefan & Chevallier, Julien & Wang, Ping & Wei, Yi-Ming, 2015. "Can China achieve its carbon intensity target by 2020 while sustaining economic growth?," Ecological Economics, Elsevier, vol. 119(C), pages 209-216.
    19. Li, Bing-Bing & Liang, Qiao-Mei & Wang, Jin-Cheng, 2015. "A comparative study on prediction methods for China's medium- and long-term coal demand," Energy, Elsevier, vol. 93(P2), pages 1671-1683.
    20. Günay, M. Erdem, 2016. "Forecasting annual gross electricity demand by artificial neural networks using predicted values of socio-economic indicators and climatic conditions: Case of Turkey," Energy Policy, Elsevier, vol. 90(C), pages 92-101.
    21. Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng, 2016. "Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model," Energy, Elsevier, vol. 100(C), pages 384-390.
    22. You, Jing, 2013. "China's challenge for decarbonized growth: Forecasts from energy demand models," Journal of Policy Modeling, Elsevier, vol. 35(4), pages 652-668.
    23. Zhi-Fu Mi & Yi-Ming Wei & Bing Wang & Jing Meng & Zhu Liu & Yuli Shan & Jingru Liu & Dabo Guan, 2017. "Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030," CEEP-BIT Working Papers 103, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    24. Comodi, G. & Cioccolanti, L. & Gargiulo, M., 2012. "Municipal scale scenario: Analysis of an Italian seaside town with MarkAL-TIMES," Energy Policy, Elsevier, vol. 41(C), pages 303-315.
    25. Shao, Zhen & Gao, Fei & Zhang, Qiang & Yang, Shan-Lin, 2015. "Multivariate statistical and similarity measure based semiparametric modeling of the probability distribution: A novel approach to the case study of mid-long term electricity consumption forecasting i," Applied Energy, Elsevier, vol. 156(C), pages 502-518.
    26. Zhang, Chuanguo & Xu, Jiao, 2012. "Retesting the causality between energy consumption and GDP in China: Evidence from sectoral and regional analyses using dynamic panel data," Energy Economics, Elsevier, vol. 34(6), pages 1782-1789.
    27. Poumanyvong, Phetkeo & Kaneko, Shinji, 2010. "Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis," Ecological Economics, Elsevier, vol. 70(2), pages 434-444, December.
    28. Wu, Qunli & Peng, Chenyang, 2017. "A hybrid BAG-SA optimal approach to estimate energy demand of China," Energy, Elsevier, vol. 120(C), pages 985-995.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhixiong Weng & Yuqi Song & Hao Ma & Zhong Ma & Tingting Liu, 2023. "Forecasting energy demand, structure, and CO2 emission: a case study of Beijing, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 10369-10391, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Xiao-Ying & Hao, Yu, 2018. "Would income inequality affect electricity consumption? Evidence from China," Energy, Elsevier, vol. 142(C), pages 215-227.
    2. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2019. "Modelling dynamic impacts of urbanization on disaggregated energy consumption in China: A spatial Durbin modelling and decomposition approach," Energy Policy, Elsevier, vol. 133(C).
    3. Adams, Samuel & Klobodu, Edem Kwame Mensah, 2017. "Urbanization, democracy, bureaucratic quality, and environmental degradation," Journal of Policy Modeling, Elsevier, vol. 39(6), pages 1035-1051.
    4. Hao, Yu & Zhang, Zong-Yong & Liao, Hua & Wei, Yi-Ming, 2015. "China’s farewell to coal: A forecast of coal consumption through 2020," Energy Policy, Elsevier, vol. 86(C), pages 444-455.
    5. Jun Hao & Xiaolei Sun & Qianqian Feng, 2020. "A Novel Ensemble Approach for the Forecasting of Energy Demand Based on the Artificial Bee Colony Algorithm," Energies, MDPI, vol. 13(3), pages 1-25, January.
    6. Khalid Khan & Chi-Wei Su & Ran Tao & Lin-Na Hao, 2020. "Urbanization and carbon emission: causality evidence from the new industrialized economies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7193-7213, December.
    7. Mu Li & Li Li & Wadim Strielkowski, 2019. "The Impact of Urbanization and Industrialization on Energy Security: A Case Study of China," Energies, MDPI, vol. 12(11), pages 1-22, June.
    8. Wang, Qiang & Wu, Shi-dai & Zeng, Yue-e & Wu, Bo-wei, 2016. "Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1563-1579.
    9. Hu, Huanling & Wang, Lin & Peng, Lu & Zeng, Yu-Rong, 2020. "Effective energy consumption forecasting using enhanced bagged echo state network," Energy, Elsevier, vol. 193(C).
    10. Zhenkai Yang & Mei-Chih Wang & Tsangyao Chang & Wing-Keung Wong & Fangjhy Li, 2022. "Which Factors Determine CO 2 Emissions in China? Trade Openness, Financial Development, Coal Consumption, Economic Growth or Urbanization: Quantile Granger Causality Test," Energies, MDPI, vol. 15(7), pages 1-18, March.
    11. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    12. Yu, Yantuan & Zhang, Ning & Kim, Jong Dae, 2020. "Impact of urbanization on energy demand: An empirical study of the Yangtze River Economic Belt in China," Energy Policy, Elsevier, vol. 139(C).
    13. Lars Sorge & Anne Neumann, 2019. "The Impact of Population, Affluence, Technology, and Urbanization on CO2 Emissions across Income Groups," Discussion Papers of DIW Berlin 1812, DIW Berlin, German Institute for Economic Research.
    14. Qiao, Hui & Chen, Siyu & Dong, Xiucheng & Dong, Kangyin, 2019. "Has China's coal consumption actually reached its peak? National and regional analysis considering cross-sectional dependence and heterogeneity," Energy Economics, Elsevier, vol. 84(C).
    15. Rauf, Abdul & Zhang, Jin & Li, Jinkai & Amin, Waqas, 2018. "Structural changes, energy consumption and carbon emissions in China: Empirical evidence from ARDL bound testing model," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 194-206.
    16. Islam, Md. Monirul & Irfan, Muhammad & Shahbaz, Muhammad & Vo, Xuan Vinh, 2022. "Renewable and non-renewable energy consumption in Bangladesh: The relative influencing profiles of economic factors, urbanization, physical infrastructure and institutional quality," Renewable Energy, Elsevier, vol. 184(C), pages 1130-1149.
    17. Yannan Zhou & Jixia Huang & Mingxiang Huang & Yicheng Lin, 2019. "The Driving Forces of Carbon Dioxide Equivalent Emissions Have Spatial Spillover Effects in Inner Mongolia," IJERPH, MDPI, vol. 16(10), pages 1-14, May.
    18. Liu, Yiming & Hao, Yu & Gao, Yixuan, 2017. "The environmental consequences of domestic and foreign investment: Evidence from China," Energy Policy, Elsevier, vol. 108(C), pages 271-280.
    19. Colmenar, J.M. & Hidalgo, J.I. & Salcedo-Sanz, S., 2018. "Automatic generation of models for energy demand estimation using Grammatical Evolution," Energy, Elsevier, vol. 164(C), pages 183-193.
    20. Gregori, Tullio & Tiwari, Aviral Kumar, 2020. "Do urbanization, income, and trade affect electricity consumption across Chinese provinces?," Energy Economics, Elsevier, vol. 89(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:127:y:2017:i:c:p:85-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.