IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i5p1945-d328020.html
   My bibliography  Save this article

Postboxes Quantitative Optimization Model

Author

Listed:
  • Milica Šelmić

    (Faculty of Transport and Traffic Engineering, University of Belgrade, 11 000 Belgrade, Serbia)

  • Miloš Nikolić

    (Faculty of Transport and Traffic Engineering, University of Belgrade, 11 000 Belgrade, Serbia)

  • Aleksandar Čupić

    (Faculty of Transport and Traffic Engineering, University of Belgrade, 11 000 Belgrade, Serbia)

Abstract

Technological developments are having a significant impact on purchasing habits and consumer behavior, and threaten the traditional model of the delivery of goods by post. The replacement of traditional letter-post items with electronic forms of communication has led to declines in the volume of postal items. Therefore, the collection of postal items has become very inefficient. This paper proposes that the postal network segment needs to be reorganized by reducing the current number of installed postboxes. To this end, a mathematical model has been defined. Considering that postboxes are one of the most basic access points to the postal network, territorial accessibility must be taken into account. The proposed model, with minor modifications, can easily be applied to optimize other access points in transportation networks. For testing purposes, this paper presents the results of computational experiments based on real data. The final result consists of scenarios that present a decision support system for the redesign of postal networks.

Suggested Citation

  • Milica Šelmić & Miloš Nikolić & Aleksandar Čupić, 2020. "Postboxes Quantitative Optimization Model," Sustainability, MDPI, vol. 12(5), pages 1-10, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1945-:d:328020
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/5/1945/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/5/1945/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhangyuan He & Hans-Dietrich Haasis, 2019. "Integration of Urban Freight Innovations: Sustainable Inner-Urban Intermodal Transportation in the Retail/Postal Industry," Sustainability, MDPI, vol. 11(6), pages 1-25, March.
    2. Novaes, Antonio G. N. & Graciolli, Odacir D., 1999. "Designing multi-vehicle delivery tours in a grid-cell format," European Journal of Operational Research, Elsevier, vol. 119(3), pages 613-634, December.
    3. Irnich, Stefan, 2008. "Solution of real-world postman problems," European Journal of Operational Research, Elsevier, vol. 190(1), pages 52-67, October.
    4. Liyun Lin & Haoying Han & Wanglin Yan & Shun Nakayama & Xianfan Shu, 2019. "Measuring Spatial Accessibility to Pick-Up Service Considering Differentiated Supply and Demand: A Case in Hangzhou, China," Sustainability, MDPI, vol. 11(12), pages 1-22, June.
    5. Mitrovic-Minic, Snezana & Krishnamurti, Ramesh & Laporte, Gilbert, 2004. "Double-horizon based heuristics for the dynamic pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(8), pages 669-685, September.
    6. Oliveira, Leise Kelli de & Morganti, Eleonora & Dablanc, Laetitia & Oliveira, Renata Lúcia Magalhães de, 2017. "Analysis of the potential demand of automated delivery stations for e-commerce deliveries in Belo Horizonte, Brazil," Research in Transportation Economics, Elsevier, vol. 65(C), pages 34-43.
    7. Marlin W. Ulmer & Dirk C. Mattfeld & Felix Köster, 2018. "Budgeting Time for Dynamic Vehicle Routing with Stochastic Customer Requests," Transportation Science, INFORMS, vol. 52(1), pages 20-37, January.
    8. Rosenfield, Donald B. & Engelstein, Israel & Feigenbaum, David, 1992. "An application of sizing service territories," European Journal of Operational Research, Elsevier, vol. 63(2), pages 164-172, December.
    9. Philipp B. Schuster, 2013. "One for all and all for one: privatization and Universal Service provision in the postal sector," Applied Economics, Taylor & Francis Journals, vol. 45(26), pages 3667-3682, September.
    10. Grunert, Tore & Sebastian, Hans-Jurgen, 2000. "Planning models for long-haul operations of postal and express shipment companies," European Journal of Operational Research, Elsevier, vol. 122(2), pages 289-309, April.
    11. Ping Ji & Kejia Chen, 2007. "The Vehicle Routing Problem: The Case of the Hong Kong Postal Service," Transportation Planning and Technology, Taylor & Francis Journals, vol. 30(2-3), pages 167-182.
    12. Lin Zhou & Xu Wang & Lin Ni & Yun Lin, 2016. "Location-Routing Problem with Simultaneous Home Delivery and Customer’s Pickup for City Distribution of Online Shopping Purchases," Sustainability, MDPI, vol. 8(8), pages 1-20, August.
    13. Eléonora Morganti & Laetitia Dablanc & François Fortin, 2014. "Final deliveries for online shopping: the deployment of pickup point networks in urban and suburban areas," Post-Print hal-01067223, HAL.
    14. Blagojević, Mladenka & Ralević, Predrag & Šarac, Dragana, 2020. "An integrated approach to analysing the cost efficiency of postal networks," Utilities Policy, Elsevier, vol. 62(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nima Pourmohammadreza & Mohammad Reza Akbari Jokar, 2023. "A Novel Two-Phase Approach for Optimization of the Last-Mile Delivery Problem with Service Options," Sustainability, MDPI, vol. 15(10), pages 1-25, May.
    2. Katarina Mostarac & Petar Mostarac & Zvonko Kavran & Dragana Šarac, 2022. "Determining Optimal Locations of Postal Access Points Based on Simulated Annealing," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
    3. Bruno, Giuseppe & Cavola, Manuel & Diglio, Antonio & Piccolo, Carmela & Pipicelli, Eduardo, 2021. "Strategies to reduce postal network access points: from demographic to spatial distribution criteria," Utilities Policy, Elsevier, vol. 69(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magdalena Mucowska, 2021. "Trends of Environmentally Sustainable Solutions of Urban Last-Mile Deliveries on the E-Commerce Market—A Literature Review," Sustainability, MDPI, vol. 13(11), pages 1-26, May.
    2. Ashu Kedia & Diana Kusumastuti & Alan Nicholson, 2019. "Establishing Collection and Delivery Points to Encourage the Use of Active Transport: A Case Study in New Zealand Using a Consumer-Centric Approach," Sustainability, MDPI, vol. 11(22), pages 1-23, November.
    3. Max Leyerer & Marc-Oliver Sonneberg & Maximilian Heumann & Michael H. Breitner, 2019. "Decision support for sustainable and resilience-oriented urban parcel delivery," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 267-300, November.
    4. Mashalah, Heider Al & Hassini, Elkafi & Gunasekaran, Angappa & Bhatt (Mishra), Deepa, 2022. "The impact of digital transformation on supply chains through e-commerce: Literature review and a conceptual framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    5. John Olsson & Daniel Hellström & Henrik Pålsson, 2019. "Framework of Last Mile Logistics Research: A Systematic Review of the Literature," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    6. Marta Viu-Roig & Eduard J. Alvarez-Palau, 2020. "The Impact of E-Commerce-Related Last-Mile Logistics on Cities: A Systematic Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    7. Milioti, Christina & Pramatari, Katerina & Kelepouri, Ioanna, 2020. "Modelling consumers’ acceptance for the click and collect service," Journal of Retailing and Consumer Services, Elsevier, vol. 56(C).
    8. Schaefer, Jaclyn S. & Figliozzi, Miguel A., 2021. "Spatial accessibility and equity analysis of Amazon parcel lockers facilities," Journal of Transport Geography, Elsevier, vol. 97(C).
    9. Roberta Alves & Renato da Silva Lima & David Custódio de Sena & Alexandre Ferreira de Pinho & José Holguín-Veras, 2019. "Agent-Based Simulation Model for Evaluating Urban Freight Policy to E-Commerce," Sustainability, MDPI, vol. 11(15), pages 1-19, July.
    10. Leung, Abraham & Lachapelle, Ugo & Burke, Matthew, 2023. "Spatio-temporal analysis of Australia Post parcel locker use during the initial system growth phase in Queensland (2013–2017)," Journal of Transport Geography, Elsevier, vol. 110(C).
    11. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    12. Kim, Woojung & Wang, Xiaokun Cara, 2022. "The adoption of alternative delivery locations in New York City: Who and how far?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 127-140.
    13. Anna Franceschetti & Ola Jabali & Gilbert Laporte, 2017. "Continuous approximation models in freight distribution management," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-433, October.
    14. Muhammad Sajid Mehmood & Gang Li & Annan Jin & Adnanul Rehman & V P I S Wijeratne & Zeeshan Zafar & Ahsan Riaz Khan & Fahad Ali Khan, 2021. "The spatial coupling effect between urban street network’s centrality and collection & delivery points: A spatial design network analysis-based study," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-21, May.
    15. Gabriele Iannaccone & Edoardo Marcucci & Valerio Gatta, 2021. "What Young E-Consumers Want? Forecasting Parcel Lockers Choice in Rome," Logistics, MDPI, vol. 5(3), pages 1-16, August.
    16. Sun, Li & Zhao, Lindu & Hou, Jing, 2015. "Optimization of postal express line network under mixed driving pattern of trucks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 147-169.
    17. Schwerdfeger, Stefan & Boysen, Nils, 2020. "Optimizing the changing locations of mobile parcel lockers in last-mile distribution," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1077-1094.
    18. Selim Çetiner & Canan Sepil & Haldun Süral, 2010. "Hubbing and routing in postal delivery systems," Annals of Operations Research, Springer, vol. 181(1), pages 109-124, December.
    19. Iacocca, Kathleen & Mahar, Stephen & Daniel Wright, P., 2022. "Strategic horizontal integration for drug cost reduction in the pharmaceutical supply chain," Omega, Elsevier, vol. 108(C).
    20. Bosse, Alexander & Ulmer, Marlin W. & Manni, Emanuele & Mattfeld, Dirk C., 2023. "Dynamic priority rules for combining on-demand passenger transportation and transportation of goods," European Journal of Operational Research, Elsevier, vol. 309(1), pages 399-408.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:5:p:1945-:d:328020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.