IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i2p499-d306669.html
   My bibliography  Save this article

Behavior of Rejects from a Biological-Mechanical Treatment Plant on the Landfill to Laboratory Scale

Author

Listed:
  • Joan Esteban-Altabella

    (Waste Engineering Group, INGRES, Department Mechanical Engineering and Construction, Universitat Jaume I, E-12071 Castellón, Spain)

  • Francisco J Colomer-Mendoza

    (Waste Engineering Group, INGRES, Department Mechanical Engineering and Construction, Universitat Jaume I, E-12071 Castellón, Spain)

  • Antonio Gallardo

    (Waste Engineering Group, INGRES, Department Mechanical Engineering and Construction, Universitat Jaume I, E-12071 Castellón, Spain)

  • Natalia Edo-Alcón

    (Waste Engineering Group, INGRES, Department Mechanical Engineering and Construction, Universitat Jaume I, E-12071 Castellón, Spain)

Abstract

This paper describes the laboratory-scale simulation of the behaviour of rejects from a biological-mechanical treatment (BMT) plant in Castellón (Spain). For this purpose, four lysimeters were built, with different densities. Simulations were carried out for 7 weeks and leachate recirculation was applied to two of them. The experimental results allowed us to determine: (i) dirt in fractions, which was relatively high (up to 15% in some fractions) due to biological processes; (ii) the field capacity for this waste with similar values to other works, which varied depending on the experiment; (iii) variation in the biomass percentage which lowered after experiments in all cases (59.5% lower on average), and the rejects’ calorific value was higher after experiments (28.2% on average); (iv) the evolution of leachate properties with or without recirculation, where percolation, in addition to the dragging of soluble materials, stabilised waste, which diminished its biological activity. Rejects’ increased calorific value will allow combustible material to be recovered in the future as a way to exploit the energy potential stored in landfills.

Suggested Citation

  • Joan Esteban-Altabella & Francisco J Colomer-Mendoza & Antonio Gallardo & Natalia Edo-Alcón, 2020. "Behavior of Rejects from a Biological-Mechanical Treatment Plant on the Landfill to Laboratory Scale," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:499-:d:306669
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/2/499/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/2/499/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Safwat Hemidat & Motasem Saidan & Salam Al-Zu’bi & Mahmoud Irshidat & Abdallah Nassour & Michael Nelles, 2019. "Potential Utilization of RDF as an Alternative Fuel to be Used in Cement Industry in Jordan," Sustainability, MDPI, vol. 11(20), pages 1-23, October.
    2. Hidalgo, D. & Martín-Marroquín, J.M. & Corona, F., 2019. "A multi-waste management concept as a basis towards a circular economy model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 481-489.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2024. "A solar-assisted liquefied biomethane production by anaerobic digestion: Dynamic simulations for harbors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Montalvo-Navarrete, Juan M. & Lasso-Palacios, Ana P., 2024. "Energy access sustainability criteria definition for Colombian rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Chavando, José Antonio Mayoral & Silva, Valter Bruno & Tarelho, Luís A.C. & Cardoso, João Sousa & Eusébio, Daniela, 2022. "Snapshot review of refuse-derived fuels," Utilities Policy, Elsevier, vol. 74(C).
    4. Agovino, Massimiliano & Cerciello, Massimiliano & Javed, Aamir & Rapposelli, Agnese, 2023. "Environmental legislation and waste management efficiency in Italian regions in view of circular economy goals," Utilities Policy, Elsevier, vol. 85(C).
    5. Inna Pitak & Gintaras Denafas & Arūnas Baltušnikas & Marius Praspaliauskas & Stasė-Irena Lukošiūtė, 2023. "Proposal for Implementation of Extraction Mechanism of Raw Materials during Landfill Mining and Its Application in Alternative Fuel Production," Sustainability, MDPI, vol. 15(5), pages 1-22, March.
    6. Safwat Hemidat & Ouafa Achouri & Loubna El Fels & Sherien Elagroudy & Mohamed Hafidi & Benabbas Chaouki & Mostafa Ahmed & Isla Hodgkinson & Jinyang Guo, 2022. "Solid Waste Management in the Context of a Circular Economy in the MENA Region," Sustainability, MDPI, vol. 14(1), pages 1-24, January.
    7. Barros, Murillo Vetroni & Salvador, Rodrigo & de Francisco, Antonio Carlos & Piekarski, Cassiano Moro, 2020. "Mapping of research lines on circular economy practices in agriculture: From waste to energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Marcin Jewiarz & Krzysztof Mudryk & Marek Wróbel & Jarosław Frączek & Krzysztof Dziedzic, 2020. "Parameters Affecting RDF-Based Pellet Quality," Energies, MDPI, vol. 13(4), pages 1-17, February.
    9. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Awasthi, Sanjeev Kumar & Liu, Tao & Duan, Yumin & Jain, Archana & Sindhu, Raveendran & Binod, Parameswaran & Pandey, 2021. "Techno-economics and life-cycle assessment of biological and thermochemical treatment of bio-waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    10. Bedoić, Robert & Špehar, Ana & Puljko, Josip & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2020. "Opportunities and challenges: Experimental and kinetic analysis of anaerobic co-digestion of food waste and rendering industry streams for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    11. Khadija Sarquah & Satyanarayana Narra & Gesa Beck & Uduak Bassey & Edward Antwi & Michael Hartmann & Nana Sarfo Agyemang Derkyi & Edward A. Awafo & Michael Nelles, 2022. "Characterization of Municipal Solid Waste and Assessment of Its Potential for Refuse-Derived Fuel (RDF) Valorization," Energies, MDPI, vol. 16(1), pages 1-15, December.
    12. Nehdi, Moncef L. & Marani, Afshin & Zhang, Lei, 2024. "Is net-zero feasible: Systematic review of cement and concrete decarbonization technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    13. Munir, M.T. & Mohaddespour, Ahmad & Nasr, A.T. & Carter, Susan, 2021. "Municipal solid waste-to-energy processing for a circular economy in New Zealand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Ana María Castañón & Lluís Sanmiquel & Marc Bascompta & Antonio Vega y de la Fuente & Víctor Contreras & Fernando Gómez-Fernández, 2021. "Used Tires as Fuel in Clinker Production: Economic and Environmental Implications," Sustainability, MDPI, vol. 13(18), pages 1-13, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:499-:d:306669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.