IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i2p489-d306556.html
   My bibliography  Save this article

Information from Earth Observation for the Management of Sustainable Land Use and Land Cover in Brazil: An Analysis of User Needs

Author

Listed:
  • Mercio Cerbaro

    (Centre for Environment & Sustainability, University of Surrey, Guildford GU2 7XH, UK)

  • Stephen Morse

    (Centre for Environment & Sustainability, University of Surrey, Guildford GU2 7XH, UK)

  • Richard Murphy

    (Centre for Environment & Sustainability, University of Surrey, Guildford GU2 7XH, UK)

  • Jim Lynch

    (Centre for Environment & Sustainability, University of Surrey, Guildford GU2 7XH, UK)

  • Geoffrey Griffiths

    (Department of Geography, University of Reading, Reading RG6 6ABRG6 6AB, UK)

Abstract

Brazil has some of the world’s most important forest and natural ecosystem resources and their sustainability is of global importance. The expansion of agriculture for livestock, the extractive industries, illegal logging, land conflicts, fire and deforestation are pressures on land use and drivers of land use change in many regions of Brazil. While different institutions in Brazil have sought to use Earth Observation (EO) data to support better land use management and conservation projects, several problems remain at the national and state level in the implementation of EO to support environmental policies and services provided to Brazilian society. This paper presents the results of a systematic analysis of the key challenges in using EO data in land management in Brazil and summarises them in a conceptual model of the factors influencing EO data use for assessing sustainable land use and land cover in Brazil. The research was based on a series of in-depth, semi-structured interviews (43) and structured interviews (53) with key stakeholders who make use of EO data across different locations in Brazil. The major challenges identified in the complex and multifaceted aspects of using this information were associated with access to, and with the processing of, raw data into usable information. The analysis also revealed novel insights on a lack of inter-institutional communication, adequate office infrastructure and personnel, availability of the right type of EO data and funding restrictions, political instability and bureaucracy as factors that limit more effective use of EO data in Brazil at present. We close this analysis by considering how EO information for the sustainable management of land use and land cover can assist institutions as they respond to the varied political and economic instabilities affecting environmental governance and deforestation levels.

Suggested Citation

  • Mercio Cerbaro & Stephen Morse & Richard Murphy & Jim Lynch & Geoffrey Griffiths, 2020. "Information from Earth Observation for the Management of Sustainable Land Use and Land Cover in Brazil: An Analysis of User Needs," Sustainability, MDPI, vol. 12(2), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:489-:d:306556
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/2/489/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/2/489/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jim Lynch & Mark Maslin & Heiko Balzter & Martin Sweeting, 2013. "Choose satellites to monitor deforestation," Nature, Nature, vol. 496(7445), pages 293-294, April.
    2. Roitman, Iris & Cardoso Galli Vieira, Ludgero & Baiocchi Jacobson, Tamiel Khan & da Cunha Bustamante, Mercedes Maria & Silva Marcondes, Nívea Jorgia & Cury, Kátia & Silva Estevam, Luciana & da Costa R, 2018. "Rural Environmental Registry: An innovative model for land-use and environmental policies," Land Use Policy, Elsevier, vol. 76(C), pages 95-102.
    3. Luiz E. O. C. Aragão & Liana O. Anderson & Marisa G. Fonseca & Thais M. Rosan & Laura B. Vedovato & Fabien H. Wagner & Camila V. J. Silva & Celso H. L. Silva Junior & Egidio Arai & Ana P. Aguiar & Jos, 2018. "21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mercio Cerbaro & Stephen Morse & Richard Murphy & Jim Lynch & Geoffrey Griffiths, 2020. "Challenges in Using Earth Observation (EO) Data to Support Environmental Management in Brazil," Sustainability, MDPI, vol. 12(24), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carmenta, Rachel & Cammelli, Federico & Dressler, Wolfram & Verbicaro, Camila & Zaehringer, Julie G., 2021. "Between a rock and a hard place: The burdens of uncontrolled fire for smallholders across the tropics," World Development, Elsevier, vol. 145(C).
    2. Carlos F. A. Silva & Swanni T. Alvarado & Alex M. Santos & Maurício O. Andrade & Silas N. Melo, 2022. "Highway Network and Fire Occurrence in Amazonian Indigenous Lands," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    3. Rocha, Samuel José Silva Soares da & Comini, Indira Bifano & Morais Júnior, Vicente Toledo Machado de & Schettini, Bruno Leão Said & Villanova, Paulo Henrique & Alves, Eliana Boaventura Bernardes Mour, 2020. "Ecological ICMS enables forest restoration in Brazil," Land Use Policy, Elsevier, vol. 91(C).
    4. Ananda Santa Rosa de Andrade & Rossano Marchetti Ramos & Edson Eyji Sano & Renata Libonati & Filippe Lemos Maia Santos & Julia Abrantes Rodrigues & Marcos Giongo & Rafael Rodrigues da Franca & Ruth El, 2021. "Implementation of Fire Policies in Brazil: An Assessment of Fire Dynamics in Brazilian Savanna," Sustainability, MDPI, vol. 13(20), pages 1-14, October.
    5. Oliveira, A.S. & Soares-Filho, B.S. & Oliveira, U. & Van der Hoff, R. & Carvalho-Ribeiro, S.M. & Oliveira, A.R. & Scheepers, L.C. & Vargas, B.A. & Rajão, R.G., 2021. "Costs and effectiveness of public and private fire management programs in the Brazilian Amazon and Cerrado," Forest Policy and Economics, Elsevier, vol. 127(C).
    6. Henrique Luis Godinho Cassol & Egidio Arai & Edson Eyji Sano & Andeise Cerqueira Dutra & Tânia Beatriz Hoffmann & Yosio Edemir Shimabukuro, 2020. "Maximum Fraction Images Derived from Year-Based Project for On-Board Autonomy-Vegetation (PROBA-V) Data for the Rapid Assessment of Land Use and Land Cover Areas in Mato Grosso State, Brazil," Land, MDPI, vol. 9(5), pages 1-20, May.
    7. Arvor, Damien & Silgueiro, Vinicius & Manzon Nunes, Gustavo & Nabucet, Jean & Pereira Dias, André, 2021. "The 2008 map of consolidated rural areas in the Brazilian Legal Amazon state of Mato Grosso: Accuracy assessment and implications for the environmental regularization of rural properties," Land Use Policy, Elsevier, vol. 103(C).
    8. Leila Dal Moro & Laércio Stolfo Maculan & Dieisson Pivoto & Grace Tibério Cardoso & Diana Pinto & Bashir Adelodun & Brian William Bodah & M. Santosh & Marluse Guedes Bortoluzzi & Elisiane Branco & Alc, 2022. "Geospatial Analysis with Landsat Series and Sentinel-3B OLCI Satellites to Assess Changes in Land Use and Water Quality over Time in Brazil," Sustainability, MDPI, vol. 14(15), pages 1-17, August.
    9. Carlos Henrique Pires Luiz & Valdir Adilson Steinke, 2022. "Recent Environmental Legislation in Brazil and the Impact on Cerrado Deforestation Rates," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    10. Prashant Patil & Murali Krishna Gumma, 2018. "A Review of the Available Land Cover and Cropland Maps for South Asia," Agriculture, MDPI, vol. 8(7), pages 1-22, July.
    11. Porro, Roberto & Porro, Noemi Sakiara Miyasaka, 2022. "State-led social and environmental policy failure in a Brazilian forest frontier: Sustainable Development Project in Anapu, Pará," Land Use Policy, Elsevier, vol. 114(C).
    12. Erbaugh, James & Bierbaum, Rosina & Castilleja, Guillermo & da Fonseca, Gustavo A.B. & Hansen, Steffen Cole Brandstrup, 2019. "Toward sustainable agriculture in the tropics," World Development, Elsevier, vol. 121(C), pages 158-162.
    13. Delaroche, Martin & Le Tourneau, François-Michel & Daugeard, Marion, 2022. "How vegetation classification and mapping may influence conservation: The example of Brazil’s Native Vegetation Protection Law," Land Use Policy, Elsevier, vol. 122(C).
    14. Matamala, Yolanda & Flores, Francisco & Arriet, Andrea & Khan, Zarrar & Feijoo, Felipe, 2023. "Probabilistic feasibility assessment of sequestration reliance for climate targets," Energy, Elsevier, vol. 272(C).
    15. Ana C. Rorato & Michelle C. A. Picoli & Judith A. Verstegen & Gilberto Camara & Francisco Gilney Silva Bezerra & Maria Isabel S. Escada, 2021. "Environmental Threats over Amazonian Indigenous Lands," Land, MDPI, vol. 10(3), pages 1-28, March.
    16. Asif, Muhammad & Searcy, Cory & Castka, Pavel, 2023. "ESG and Industry 5.0: The role of technologies in enhancing ESG disclosure," Technological Forecasting and Social Change, Elsevier, vol. 195(C).
    17. West, Thales A.P. & Fearnside, Philip M., 2021. "Brazil’s conservation reform and the reduction of deforestation in Amazonia," Land Use Policy, Elsevier, vol. 100(C).
    18. Feng, Jing-Chun & Sun, Liwei & Yan, Jinyue, 2023. "Carbon sequestration via shellfish farming: A potential negative emissions technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    19. Saulo Folharini & António Vieira & António Bento-Gonçalves & Sara Silva & Tiago Marques & Jorge Novais, 2023. "Bibliometric Analysis on Wildfires and Protected Areas," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    20. Hou, Dawei & Meng, Fanhao & Ji, Chao & Xie, Li & Zhu, Wenjuan & Wang, Shizhong & Sun, Hua, 2022. "Linking food production and environmental outcomes: An application of a modified relative risk model to prioritize land-management practices," Agricultural Systems, Elsevier, vol. 196(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:489-:d:306556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.