IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i22p9660-d447809.html
   My bibliography  Save this article

Accounting for Water Footprint of an Open-Pit Copper Mine

Author

Listed:
  • Kamrul Islam

    (Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan)

  • Shinsuke Murakami

    (Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
    Department of Technology Management for Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan)

Abstract

Water is a crucial input for any production system, and mining is no exception. A huge amount of water is being used in the various phases of mining activities. In the coming decades, the competition in using a sufficient amount of fresh water will become a major hurdle for the mining industry. Water footprint (WF), an accounting framework for tracking the amount of water used to produce a unit of product, can be useful to the mining companies by quantifying their water resource appropriation and identifying ways to reduce the consumption. In this study, we accounted for the green, blue, and grey water footprint of an open-pit copper mine that is located in Laos. The input–output water flows of the mine are also developed from the inventory of water use. Moreover, we have calculated the uncertainty in the water footprint accounting to check the robustness of the findings. According to the results, the green, blue, and grey WF of the studied mine are 52.04, 988.83, and 69.78 m 3 /tonne of copper concentrate, respectively. After the installation of a passive effluent treatment system in 2013, the calculated grey WF of the mine was 13.64 m 3 /tonne, a fivefold decrease than before. The uncertainty in the footprint ranges between 8% to 11% which shows the robustness of the analysis. Although green WF is ignored by most studies, we suggest incorporating it into the accounting. The responsible share of a supply-chain WF to the total blue WF is about 98%, which is quite huge. Water embedded in the hydroelectricity is mainly responsible for such a huge amount of blue WF. Evidently, the use of electricity from hydropower results in the consumption of a large amount of water in exchange for a reduction in carbon emissions. Thus, the article attempts to demonstrate the escalating importance of WF accounting of this mine.

Suggested Citation

  • Kamrul Islam & Shinsuke Murakami, 2020. "Accounting for Water Footprint of an Open-Pit Copper Mine," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9660-:d:447809
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/22/9660/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/22/9660/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arjen Y. Hoekstra, 2017. "Water Footprint Assessment: Evolvement of a New Research Field," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3061-3081, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emre Güney & Nuray Demirel, 2021. "Water Footprint Assessment of Carbon in Pulp Gold Processing in Turkey," Sustainability, MDPI, vol. 13(15), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehsan Qasemipour & Farhad Tarahomi & Markus Pahlow & Seyed Saeed Malek Sadati & Ali Abbasi, 2020. "Assessment of Virtual Water Flows in Iran Using a Multi-Regional Input-Output Analysis," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    2. Long Zhang & Xiaoyu Luan & Xinyi Chen & Shuhao Zhang & Yukun Liang & Zhaojie Cui, 2022. "Water Footprint Inventory Construction of Cathode Copper Products in a Chinese Eco-Industry," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    3. George Tsakiris, 2017. "Facets of Modern Water Resources Management: Prolegomena," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2899-2904, August.
    4. Dimitrios P. Platis & Christos D. Anagnostopoulos & Aggeliki D. Tsaboula & Georgios C. Menexes & Kiriaki L. Kalburtji & Andreas P. Mamolos, 2019. "Energy Analysis, and Carbon and Water Footprint for Environmentally Friendly Farming Practices in Agroecosystems and Agroforestry," Sustainability, MDPI, vol. 11(6), pages 1-11, March.
    5. Li, Zhibin & Feng, Bianbian & Wang, Wei & Yang, Xi & Wu, Pute & Zhuo, La, 2022. "Spatial and temporal sensitivity of water footprint assessment in crop production to modelling inputs and parameters," Agricultural Water Management, Elsevier, vol. 271(C).
    6. Tomaz, Alexandra & Palma, José Ferro & Ramos, Tiago & Costa, Maria Natividade & Rosa, Elizabete & Santos, Marta & Boteta, Luís & Dôres, José & Patanita, Manuel, 2021. "Yield, technological quality and water footprints of wheat under Mediterranean climate conditions: A field experiment to evaluate the effects of irrigation and nitrogen fertilization strategies," Agricultural Water Management, Elsevier, vol. 258(C).
    7. Zafar Hussain & Zongmin Wang & Jiaxue Wang & Haibo Yang & Muhammad Arfan & Daniyal Hassan & Wusen Wang & Muhammad Imran Azam & Muhammad Faisal, 2022. "A comparative Appraisal of Classical and Holistic Water Scarcity Indicators," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(3), pages 931-950, February.
    8. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    9. Elio Romano & Pasquale De Palo & Flavio Tidona & Aristide Maggiolino & Andrea Bragaglio, 2021. "Dairy Buffalo Life Cycle Assessment (LCA) Affected by a Management Choice: The Production of Wheat Crop," Sustainability, MDPI, vol. 13(19), pages 1-20, October.
    10. Cai, Beiming & Jiang, Ling & Liu, Yu & Wang, Feng & Zhang, Wei & Yan, Xu & Ge, Zhenzi, 2023. "Regional trends and socioeconomic drivers of energy-related water use in China from 2007 to 2017," Energy, Elsevier, vol. 275(C).
    11. Orsolya Tompa & Anna Kiss & Matthieu Maillot & Eszter Sarkadi Nagy & Ágoston Temesi & Zoltán Lakner, 2022. "Sustainable Diet Optimization Targeting Dietary Water Footprint Reduction—A Country-Specific Study," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    12. Radini, Serena & Marinelli, Enrico & Akyol, Çağrı & Eusebi, Anna Laura & Vasilaki, Vasileia & Mancini, Adriano & Frontoni, Emanuele & Bischetti, Gian Battista & Gandolfi, Claudio & Katsou, Evina & Fat, 2021. "Urban water-energy-food-climate nexus in integrated wastewater and reuse systems: Cyber-physical framework and innovations," Applied Energy, Elsevier, vol. 298(C).
    13. Emily Grubert, 2023. "Yellow, red, and brown energy: leveraging water footprinting concepts for decarbonizing energy systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 7239-7260, July.
    14. Karandish, Fatemeh & Šimůnek, Jiří, 2019. "A comparison of the HYDRUS (2D/3D) and SALTMED models to investigate the influence of various water-saving irrigation strategies on the maize water footprint," Agricultural Water Management, Elsevier, vol. 213(C), pages 809-820.
    15. Marcelo Werneck Barbosa & José M. Cansino, 2022. "A Water Footprint Management Construct in Agri-Food Supply Chains: A Content Validity Analysis," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    16. Rodriguez, Renata del G. & Scanlon, Bridget R. & King, Carey W. & Scarpare, Fabio V. & Xavier, Alexandre C. & Pruski, Fernando F., 2018. "Biofuel-water-land nexus in the last agricultural frontier region of the Brazilian Cerrado," Applied Energy, Elsevier, vol. 231(C), pages 1330-1345.
    17. Maziar Mohammadi & Hamid Darabi & Fahimeh Mirchooli & Alireza Bakhshaee & Ali Torabi Haghighi, 2021. "Flood risk mapping and crop-water loss modeling using water footprint analysis in agricultural watershed, northern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 2007-2025, January.
    18. Amin, M.G. Mostofa & Mahbub, S.M. Mubtasim & Hasan, Md. Moudud & Pervin, Wafa & Sharmin, Jinat & Hossain, Md. Delwar, 2023. "Plant–water relations in subtropical maize fields under mulching and organic fertilization," Agricultural Water Management, Elsevier, vol. 286(C).
    19. R. R. Weerasooriya & L. P. K. Liyanage & R. H. K. Rathnappriya & W. B. M. A. C. Bandara & T. A. N. T. Perera & M. H. J. P. Gunarathna & G. Y. Jayasinghe, 2021. "Industrial water conservation by water footprint and sustainable development goals: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12661-12709, September.
    20. Duarte, Rosa & Pinilla, Vicente & Serrano, Ana, 2019. "Long Term Drivers of Global Virtual Water Trade: A Trade Gravity Approach for 1965–2010," Ecological Economics, Elsevier, vol. 156(C), pages 318-326.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9660-:d:447809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.