IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i20p8681-d431507.html
   My bibliography  Save this article

Discovering Spatio-Temporal Clusters of Road Collisions Using the Method of Fast Bayesian Model-Based Cluster Detection

Author

Listed:
  • Yeran Sun

    (Department of Geography, College of Science, Swansea University, Swansea SA28PP, UK
    School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China)

  • Yu Wang

    (Department of Urban and Rural Planning, School of Architecture, Tianjin University, Tianjin 300072, China)

  • Ke Yuan

    (Academy of China Open Economy Studies, University of International Business and Economics, Beijing 100029, China)

  • Ting On Chan

    (School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China)

  • Ying Huang

    (School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China)

Abstract

Public availability of geo-coded or geo-referenced road collisions (crashes) makes it possible to perform geovisualisation and spatio-temporal analysis of road collisions across a city. This study aims to detect spatio-temporal clusters of road collisions across Greater London between 2010 and 2014. We implemented a fast Bayesian model-based cluster detection method with no covariates and after adjusting for potential covariates respectively. As empirical evidence on the association of street connectivity measures and the occurrence of road collisions had been found, we selected street connectivity measures as the potential covariates in our cluster detection. Results of the most significant cluster and the second most significant cluster during five consecutive years are located around the central areas. Moreover, after adjusting the covariates, the most significant cluster moves from the central areas of London to its peripheral areas, while the second most significant cluster remains unchanged. Additionally, one potential covariate used in this study, length-based road density, exhibits a positive association with the number of road collisions; meanwhile count-based intersection density displays a negative association. Although the covariates (i.e., road density and intersection density) exhibit potential impact on the clusters of road collisions, they are unlikely to contribute to the majority of clusters. Furthermore, the method of fast Bayesian model-based cluster detection is developed to discover spatio-temporal clusters of serious injury collisions. Most of the areas at risk of serious injury collisions overlay those at risk of road collisions. Although not being identified as areas at risk of road collisions, some districts, e.g., City of London, are regarded as areas at risk of serious injury collisions.

Suggested Citation

  • Yeran Sun & Yu Wang & Ke Yuan & Ting On Chan & Ying Huang, 2020. "Discovering Spatio-Temporal Clusters of Road Collisions Using the Method of Fast Bayesian Model-Based Cluster Detection," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8681-:d:431507
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/20/8681/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/20/8681/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ke Nie & Zhensheng Wang & Qingyun Du & Fu Ren & Qin Tian, 2015. "A Network-Constrained Integrated Method for Detecting Spatial Cluster and Risk Location of Traffic Crash: A Case Study from Wuhan, China," Sustainability, MDPI, vol. 7(3), pages 1-16, March.
    2. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    3. Yaxin Fan & Xinyan Zhu & Bing She & Wei Guo & Tao Guo, 2018. "Network-constrained spatio-temporal clustering analysis of traffic collisions in Jianghan District of Wuhan, China," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-23, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikoline N. Knudsen & Jörg Schullehner & Birgitte Hansen & Lisbeth F. Jørgensen & Søren M. Kristiansen & Denitza D. Voutchkova & Thomas A. Gerds & Per K. Andersen & Kristine Bihrmann & Morten Grønbæk , 2017. "Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up," IJERPH, MDPI, vol. 14(6), pages 1-13, June.
    2. Leonardo Padilla & Bernado Lagos‐Álvarez & Jorge Mateu & Emilio Porcu, 2020. "Space‐time autoregressive estimation and prediction with missing data based on Kalman filtering," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
    3. Scott, Ryan P. & Scott, Tyler A., 2019. "Investing in collaboration for safety: Assessing grants to states for oil and gas distribution pipeline safety program enhancement," Energy Policy, Elsevier, vol. 124(C), pages 332-345.
    4. Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
    5. Brown, Paul T. & Joshi, Chaitanya & Joe, Stephen & Rue, Håvard, 2021. "A novel method of marginalisation using low discrepancy sequences for integrated nested Laplace approximations," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    6. Andre Python & Andreas Bender & Marta Blangiardo & Janine B. Illian & Ying Lin & Baoli Liu & Tim C.D. Lucas & Siwei Tan & Yingying Wen & Davit Svanidze & Jianwei Yin, 2022. "A downscaling approach to compare COVID‐19 count data from databases aggregated at different spatial scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 202-218, January.
    7. Michaela Prokešová & Eva Jensen, 2013. "Asymptotic Palm likelihood theory for stationary point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 387-412, April.
    8. Shreosi Sanyal & Thierry Rochereau & Cara Nichole Maesano & Laure Com-Ruelle & Isabella Annesi-Maesano, 2018. "Long-Term Effect of Outdoor Air Pollution on Mortality and Morbidity: A 12-Year Follow-Up Study for Metropolitan France," IJERPH, MDPI, vol. 15(11), pages 1-8, November.
    9. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    10. Thomas M. Koutsos & Georgios C. Menexes & Andreas P. Mamolos, 2021. "The Use of Crop Yield Autocorrelation Data as a Sustainable Approach to Adjust Agronomic Inputs," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    11. David Jiménez-Hernández & Víctor González-Calatayud & Ana Torres-Soto & Asunción Martínez Mayoral & Javier Morales, 2020. "Digital Competence of Future Secondary School Teachers: Differences According to Gender, Age, and Branch of Knowledge," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    12. Vanessa Santos-Sánchez & Juan Antonio Córdoba-Doña & Javier García-Pérez & Antonio Escolar-Pujolar & Lucia Pozzi & Rebeca Ramis, 2020. "Cancer Mortality and Deprivation in the Proximity of Polluting Industrial Facilities in an Industrial Region of Spain," IJERPH, MDPI, vol. 17(6), pages 1-15, March.
    13. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    14. Yuan Yan & Eva Cantoni & Chris Field & Margaret Treble & Joanna Mills Flemming, 2023. "Spatiotemporal modeling of mature‐at‐length data using a sliding window approach," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
    15. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    16. Xin Jin, 2021. "Can we imitate the principal investor's behavior to learn option price?," Papers 2105.11376, arXiv.org, revised Jan 2022.
    17. Jamie L. Cross & Chenghan Hou & Aubrey Poon, 2018. "International Transmission of Macroeconomic Uncertainty in Small Open Economies: An Empirical Approach," Working Papers No 12/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    18. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    19. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    20. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8681-:d:431507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.