IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i20p8520-d428529.html
   My bibliography  Save this article

Evaluating Cost Trade-Offs between Hydropower and Fish Passage Mitigation

Author

Listed:
  • Terese E. Venus

    (Agricultural Production and Resource Economics, Technical University of Munich, Alte Akademie 14, 85354 Freising, Germany)

  • Nicole Smialek

    (Aquatic Systems Biology, Technical University of Munich, Mühlenweg 22, 85354 Freising, Germany)

  • Joachim Pander

    (Aquatic Systems Biology, Technical University of Munich, Mühlenweg 22, 85354 Freising, Germany)

  • Atle Harby

    (SINTEF Energy Research, Water Resources Group, P.O. Box 4761 Torgarden, 7465 Trondheim, Norway)

  • Juergen Geist

    (Aquatic Systems Biology, Technical University of Munich, Mühlenweg 22, 85354 Freising, Germany)

Abstract

To promote the sustainable management of hydropower, decision makers require information about cost trade-offs between the restoration of fish passage and hydropower production. We provide a systematic overview of the construction, operational, monitoring, and power loss costs associated with upstream and downstream fish passage measures in the European context. When comparing the total costs of upstream measures across different electricity price scenarios, nature-like solutions (67–88 EUR/kW) tend to cost less than technical solutions (201–287 EUR/kW) on average. Furthermore, nature-like fish passes incur fewer power losses and provide habitat in addition to facilitating fish passage, which presents a strong argument for supporting their development. When evaluating different cost categories of fish passage measures across different electricity price scenarios, construction (45–87%) accounts for the largest share compared to operation (0–1.2%) and power losses (11–54%). However, under a high electricity price scenario, power losses exceed construction costs for technical fish passes. Finally, there tends to be limited information on operational, power loss, and monitoring costs associated with passage measures. Thus, we recommend that policy makers standardize monitoring and reporting of hydraulic, structural, and biological parameters as well as costs in a more detailed manner.

Suggested Citation

  • Terese E. Venus & Nicole Smialek & Joachim Pander & Atle Harby & Juergen Geist, 2020. "Evaluating Cost Trade-Offs between Hydropower and Fish Passage Mitigation," Sustainability, MDPI, vol. 12(20), pages 1-30, October.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8520-:d:428529
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/20/8520/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/20/8520/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pérez-Díaz, Juan I. & Wilhelmi, José R., 2010. "Assessment of the economic impact of environmental constraints on short-term hydropower plant operation," Energy Policy, Elsevier, vol. 38(12), pages 7960-7970, December.
    2. Ewelina Szałkiewicz & Szymon Jusik & Mateusz Grygoruk, 2018. "Status of and Perspectives on River Restoration in Europe: 310,000 Euros per Hectare of Restored River," Sustainability, MDPI, vol. 10(1), pages 1-15, January.
    3. Trussart, Serge & Messier, Danielle & Roquet, Vincent & Aki, Shuichi, 2002. "Hydropower projects: a review of most effective mitigation measures," Energy Policy, Elsevier, vol. 30(14), pages 1251-1259, November.
    4. Aldersey-Williams, J. & Rubert, T., 2019. "Levelised cost of energy – A theoretical justification and critical assessment," Energy Policy, Elsevier, vol. 124(C), pages 169-179.
    5. Schramm, Michael P. & Bevelhimer, Mark S. & DeRolph, Chris R., 2016. "A synthesis of environmental and recreational mitigation requirements at hydropower projects in the United States," Environmental Science & Policy, Elsevier, vol. 61(C), pages 87-96.
    6. Venus, Terese E. & Hinzmann, Mandy & Bakken, Tor Haakon & Gerdes, Holger & Godinho, Francisco Nunes & Hansen, Bendik & Pinheiro, António & Sauer, Johannes, 2020. "The public's perception of run-of-the-river hydropower across Europe," Energy Policy, Elsevier, vol. 140(C).
    7. Wustenhagen, Rolf & Bilharz, Michael, 2006. "Green energy market development in Germany: effective public policy and emerging customer demand," Energy Policy, Elsevier, vol. 34(13), pages 1681-1696, September.
    8. Manzano-Agugliaro, Francisco & Taher, Myriam & Zapata-Sierra, Antonio & Juaidi, Adel & Montoya, Francisco G., 2017. "An overview of research and energy evolution for small hydropower in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 476-489.
    9. Hirth, Lion, 2016. "The benefits of flexibility: The value of wind energy with hydropower," Applied Energy, Elsevier, vol. 181(C), pages 210-223.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hayes, D.S. & Bruno, M.C. & Alp, M. & Boavida, I. & Batalla, R.J. & Bejarano, M.D. & Noack, M. & Vanzo, D. & Casas-Mulet, R. & Vericat, D. & Carolli, M. & Tonolla, D. & Halleraker, J.H. & Gosselin, M., 2023. "100 key questions to guide hydropeaking research and policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    2. Brown, Erik & Sulaeman, Samer & Quispe-Abad, Raul & Müller, Norbert & Moran, Emilio, 2023. "Safe passage for fish: The case for in-stream turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    3. Venus, Terese E. & Sauer, Johannes, 2022. "Certainty pays off: The public's value of environmental monitoring," Ecological Economics, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Garrote, Luis, 2019. "Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants," Applied Energy, Elsevier, vol. 256(C).
    2. Ptak, Thomas & Crootof, Arica & Harlan, Tyler & Kelly, Sarah, 2022. "Critically evaluating the purported global “boom” in small hydropower development through spatial and temporal analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    3. Oladosu, Gbadebo A. & Werble, Joseph & Tingen, William & Witt, Adam & Mobley, Miles & O'Connor, Patrick, 2021. "Costs of mitigating the environmental impacts of hydropower projects in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Guisández, Ignacio & Pérez-Díaz, Juan I. & Wilhelmi, José R., 2013. "Assessment of the economic impact of environmental constraints on annual hydropower plant operation," Energy Policy, Elsevier, vol. 61(C), pages 1332-1343.
    5. Canessa, Carolin & Venus, Terese E. & Wiesmeier, Miriam & Mennig, Philipp & Sauer, Johannes, 2023. "Incentives, Rewards or Both in Payments for Ecosystem Services: Drawing a Link Between Farmers' Preferences and Biodiversity Levels," Ecological Economics, Elsevier, vol. 213(C).
    6. Yucesan, Melih & Kahraman, Gökhan, 2019. "Risk evaluation and prevention in hydropower plant operations: A model based on Pythagorean fuzzy AHP," Energy Policy, Elsevier, vol. 126(C), pages 343-351.
    7. Stanisław Zaborowski & Tomasz Kałuża & Szymon Jusik, 2023. "The Impact of Spontaneous and Induced Restoration on the Hydromorphological Conditions and Macrophytes, Example of Flinta River," Sustainability, MDPI, vol. 15(5), pages 1-22, February.
    8. Mr. Jon Strand, 2007. "Energy Efficiency and Renewable Energy Supply for the G-7 Countries, with Emphasis on Germany," IMF Working Papers 2007/299, International Monetary Fund.
    9. Kruyt, Bert & Lehning, Michael & Kahl, Annelen, 2017. "Potential contributions of wind power to a stable and highly renewable Swiss power supply," Applied Energy, Elsevier, vol. 192(C), pages 1-11.
    10. Quentin Perrier, 2017. "The French Nuclear Bet," Working Papers 2017.18, Fondazione Eni Enrico Mattei.
    11. L. Mundaca & H. Moncreiff, 2021. "New Perspectives on Green Energy Defaults," Journal of Consumer Policy, Springer, vol. 44(3), pages 357-383, September.
    12. Möllering, Guido, 2009. "Market constitution analysis: A new framework applied to solar power technology markets," MPIfG Working Paper 09/7, Max Planck Institute for the Study of Societies.
    13. Frank, Alejandro Germán & Gerstlberger, Wolfgang & Paslauski, Carolline Amaral & Lerman, Laura Visintainer & Ayala, Néstor Fabián, 2018. "The contribution of innovation policy criteria to the development of local renewable energy systems," Energy Policy, Elsevier, vol. 115(C), pages 353-365.
    14. Rehner, Robert & McCauley, Darren, 2016. "Security, justice and the energy crossroads: Assessing the implications of the nuclear phase-out in Germany," Energy Policy, Elsevier, vol. 88(C), pages 289-298.
    15. Muhammad Yaseen Bhutto & Yasir Ali Soomro & Hailan Yang, 2022. "Extending the Theory of Planned Behavior: Predicting Young Consumer Purchase Behavior of Energy-Efficient Appliances (Evidence From Developing Economy)," SAGE Open, , vol. 12(1), pages 21582440221, February.
    16. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    17. Klie, Leo & Madlener, Reinhard, 2022. "Optimal configuration and diversification of wind turbines: A hybrid approach to improve the penetration of wind power," Energy Economics, Elsevier, vol. 105(C).
    18. Damian Liszka & Zbigniew Krzemianowski & Tomasz Węgiel & Dariusz Borkowski & Andrzej Polniak & Konrad Wawrzykowski & Artur Cebula, 2022. "Alternative Solutions for Small Hydropower Plants," Energies, MDPI, vol. 15(4), pages 1-31, February.
    19. Van Dael, Miet & Lizin, Sebastien & Swinnen, Gilbert & Van Passel, Steven, 2017. "Young people’s acceptance of bioenergy and the influence of attitude strength on information provision," Renewable Energy, Elsevier, vol. 107(C), pages 417-430.
    20. Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:20:p:8520-:d:428529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.