IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i19p8080-d422120.html
   My bibliography  Save this article

The Logistics Service Mode Selection for Last Mile Delivery Considering Delivery Service Cost and Capability

Author

Listed:
  • Feng Li

    (Department of Information Management and Decision Sciences, School of Business Administration, Northeastern University, Shenyang 110169, China)

  • Zhi-Ping Fan

    (Department of Information Management and Decision Sciences, School of Business Administration, Northeastern University, Shenyang 110169, China
    Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110167, China)

  • Bing-Bing Cao

    (School of Management, Guangzhou University, Guangzhou 510006, China)

  • Hai-Mei Lv

    (Department of Information Management and Decision Sciences, School of Business Administration, Northeastern University, Shenyang 110169, China)

Abstract

The last mile delivery service is an important part in the logistics service process of express enterprises. How to select a suitable logistics service mode for last mile delivery to maximize the delivery service capacity and minimize delivery service cost is a noteworthy problem, but studies on this problem are still lacking. In this paper, we first analyze three potential logistics service modes for last mile delivery, i.e., self-run mode, outsourcing mode, and alliance mode, and then propose a selection framework of logistics service mode for last mile delivery based on a two-dimensional matrix decision model according to the two dimensions of delivery service cost advantage and delivery service capability advantage. Next, we give the calculation formulas for the delivery service cost and delivery service capability. Furthermore, we propose a method for logistics service mode selection for last mile delivery according to delivery service costs and delivery service capabilities of three potential logistics service mode. Finally, we show the feasibility and effectiveness of the proposed method by a case analysis.

Suggested Citation

  • Feng Li & Zhi-Ping Fan & Bing-Bing Cao & Hai-Mei Lv, 2020. "The Logistics Service Mode Selection for Last Mile Delivery Considering Delivery Service Cost and Capability," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:8080-:d:422120
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/19/8080/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/19/8080/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Devari, Aashwinikumar & Nikolaev, Alexander G. & He, Qing, 2017. "Crowdsourcing the last mile delivery of online orders by exploiting the social networks of retail store customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 105-122.
    2. Chao Chen & Shenle Pan, 2015. "Using the Crowd of Taxis to Last Mile Delivery in E-commerce: a Methodological Research," Post-Print hal-01226813, HAL.
    3. Jane, Chin-Chia, 2011. "Performance evaluation of logistics systems under cost and reliability considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 130-137, March.
    4. Dondo, Rodolfo & Cerda, Jaime, 2007. "A cluster-based optimization approach for the multi-depot heterogeneous fleet vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1478-1507, February.
    5. Juan Guillermo Urzúa-Morales & Juan Pedro Sepulveda-Rojas & Miguel Alfaro & Guillermo Fuertes & Rodrigo Ternero & Manuel Vargas, 2020. "Logistic Modeling of the Last Mile: Case Study Santiago, Chile," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    6. Kitjacharoenchai, Patchara & Min, Byung-Cheol & Lee, Seokcheon, 2020. "Two echelon vehicle routing problem with drones in last mile delivery," International Journal of Production Economics, Elsevier, vol. 225(C).
    7. John Olsson & Daniel Hellström & Henrik Pålsson, 2019. "Framework of Last Mile Logistics Research: A Systematic Review of the Literature," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    8. Liu, Ran & Xie, Xiaolan & Augusto, Vincent & Rodriguez, Carlos, 2013. "Heuristic algorithms for a vehicle routing problem with simultaneous delivery and pickup and time windows in home health care," European Journal of Operational Research, Elsevier, vol. 230(3), pages 475-486.
    9. Mohit Goswami & Arijit De & Muhammad Khoirul Khakim Habibi & Yash Daultani, 2020. "Examining freight performance of third-party logistics providers within the automotive industry in India: an environmental sustainability perspective," International Journal of Production Research, Taylor & Francis Journals, vol. 58(24), pages 7565-7592, December.
    10. Seung Yoon Ko & Ratna Permata Sari & Muzaffar Makhmudov & Chang Seong Ko, 2020. "Collaboration Model for Service Clustering in Last-Mile Delivery," Sustainability, MDPI, vol. 12(14), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomáš Settey & Jozef Gnap & Dominika Beňová & Michal Pavličko & Oľga Blažeková, 2021. "The Growth of E-Commerce Due to COVID-19 and the Need for Urban Logistics Centers Using Electric Vehicles: Bratislava Case Study," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    2. Peng Xing & Xiangru Zhao & Mingxing Wang, 2022. "The Optimal Combination between Recycling Channel and Logistics Service Outsourcing in a Closed-Loop Supply Chain Considering Consumers’ Environmental Awareness," Sustainability, MDPI, vol. 14(24), pages 1-25, December.
    3. Feng Li & Zhi-Ping Fan & Bing-Bing Cao & Xin Li, 2020. "Logistics Service Mode Selection for Last Mile Delivery: An Analysis Method Considering Customer Utility and Delivery Service Cost," Sustainability, MDPI, vol. 13(1), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Li & Zhi-Ping Fan & Bing-Bing Cao & Xin Li, 2020. "Logistics Service Mode Selection for Last Mile Delivery: An Analysis Method Considering Customer Utility and Delivery Service Cost," Sustainability, MDPI, vol. 13(1), pages 1-22, December.
    2. Gleb V. Savin, 2021. "The smart city transport and logistics system: Theory, methodology and practice," Upravlenets, Ural State University of Economics, vol. 12(6), pages 67-86, October.
    3. Patrick Klein & Bastian Popp, 2022. "Last-Mile Delivery Methods in E-Commerce: Does Perceived Sustainability Matter for Consumer Acceptance and Usage?," Sustainability, MDPI, vol. 14(24), pages 1-27, December.
    4. Wang, Haibo & Alidaee, Bahram, 2023. "White-glove service delivery: A quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    5. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    6. Marta Viu-Roig & Eduard J. Alvarez-Palau, 2020. "The Impact of E-Commerce-Related Last-Mile Logistics on Cities: A Systematic Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    7. Sergio Maria Patella & Gianluca Grazieschi & Valerio Gatta & Edoardo Marcucci & Stefano Carrese, 2020. "The Adoption of Green Vehicles in Last Mile Logistics: A Systematic Review," Sustainability, MDPI, vol. 13(1), pages 1-29, December.
    8. Bahram Alidaee & Haibo Wang & Lutfu S. Sua, 2023. "The Last-Mile Delivery of Heavy, Bulky, Oversized Products: Literature Review and Research Agenda," Logistics, MDPI, vol. 7(4), pages 1-16, December.
    9. Tomislav Letnik & Katja Hanžič & Giuseppe Luppino & Matej Mencinger, 2022. "Impact of Logistics Trends on Freight Transport Development in Urban Areas," Sustainability, MDPI, vol. 14(24), pages 1-18, December.
    10. Peng, Xiaoshuai & Zhang, Lele & Thompson, Russell G. & Wang, Kangzhou, 2023. "A three-phase heuristic for last-mile delivery with spatial-temporal consolidation and delivery options," International Journal of Production Economics, Elsevier, vol. 266(C).
    11. Filip Škultéty & Dominika Beňová & Jozef Gnap, 2021. "City Logistics as an Imperative Smart City Mechanism: Scrutiny of Clustered EU27 Capitals," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    12. Pahlevani, Delaram & Abbasi, Babak & Hearne, John W. & Eberhard, Andrew, 2022. "A cluster-based algorithm for home health care planning: A case study in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    13. Zakariah, Sahidah & Pyeman, Jaafar, 2013. "Current State and Issues of Logistics Cost Accounting and Management in Malaysia," MPRA Paper 46605, University Library of Munich, Germany.
    14. Tapia, Rodrigo J. & Kourounioti, Ioanna & Thoen, Sebastian & de Bok, Michiel & Tavasszy, Lori, 2023. "A disaggregate model of passenger-freight matching in crowdshipping services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    15. Wojciech Rabiega & Artur Gorzałczyński & Robert Jeszke & Paweł Mzyk & Krystian Szczepański, 2021. "How Long Will Combustion Vehicles Be Used? Polish Transport Sector on the Pathway to Climate Neutrality," Energies, MDPI, vol. 14(23), pages 1-19, November.
    16. Qi, Mingyao & Lin, Wei-Hua & Li, Nan & Miao, Lixin, 2012. "A spatiotemporal partitioning approach for large-scale vehicle routing problems with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 248-257.
    17. Bahareh Mansouri & Subhasmita Sahu & M. Ali Ülkü, 2023. "Toward Greening City Logistics: A Systematic Review on Corporate Governance and Social Responsibility in Managing Urban Distribution Centers," Logistics, MDPI, vol. 7(1), pages 1-20, March.
    18. Tengkuo Zhu & Stephen D. Boyles & Avinash Unnikrishnan, 2024. "Battery Electric Vehicle Traveling Salesman Problem with Drone," Networks and Spatial Economics, Springer, vol. 24(1), pages 49-97, March.
    19. Fink, Alexander A. & Klöckner, Maximilian & Räder, Tobias & Wagner, Stephan M., 2022. "Supply chain management accelerators: Types, objectives, and key design features," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    20. Yeh, Wei-Chang, 2024. "A new hybrid inequality BAT for comprehensive all-level d-MP identification using minimal paths in Multistate Flow Network reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:8080-:d:422120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.