IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i19p7920-d418812.html
   My bibliography  Save this article

Construction Cost Estimation Using a Case-Based Reasoning Hybrid Genetic Algorithm Based on Local Search Method

Author

Listed:
  • Sangsun Jung

    (Department of Architectural Engineering, Seoul National University, Seoul 08826, Korea)

  • Jae-Ho Pyeon

    (Civil & Environmental Engineering, San Jose State University, Washington Sq, San Jose, CA 95192, USA)

  • Hyun-Soo Lee

    (Department of Architectural Engineering, Seoul National University, Seoul 08826, Korea)

  • Moonseo Park

    (Department of Architectural Engineering, Seoul National University, Seoul 08826, Korea)

  • Inseok Yoon

    (Department of Architectural Engineering, Seoul National University, Seoul 08826, Korea
    Institute of Construction and Environmental Engineering, Seoul National University, Seoul 08826, Korea)

  • Juhee Rho

    (Department of Architectural Engineering, Seoul National University, Seoul 08826, Korea)

Abstract

Estimates of project costs in the early stages of a construction project have a significant impact on the operator’s decision-making in essential matters, such as the site’s decision or the construction period. However, it is not easy to carry out the initial stage with confidence, because information such as design books and specifications is not available. In previous studies, case-based reasoning (CBR) is used to estimate initial construction costs, and genetic algorithms are used to calculate the weight of the retrieve phase in CBR’s process. However, it is difficult to draw a better solution than the current one, because existing genetic algorithms use random numbers. To overcome these limitations, we reflect correlation numbers in the genetic algorithms by using the method of local search. Then, we determine the weights using a hybrid genetic algorithm that combines local search and genetic algorithms. A case-based reasoning model was developed using a hybrid genetic algorithm. Then, the model was verified with construction cost data that were not used for the development of the model. As a result, it was found that the hybrid genetic algorithm and case-based reasoning applied with the local search performed better than the existing solution. The detail mean error value was found to be 3.52%, 6.15%, and 0.33% higher for each case than the previous one.

Suggested Citation

  • Sangsun Jung & Jae-Ho Pyeon & Hyun-Soo Lee & Moonseo Park & Inseok Yoon & Juhee Rho, 2020. "Construction Cost Estimation Using a Case-Based Reasoning Hybrid Genetic Algorithm Based on Local Search Method," Sustainability, MDPI, vol. 12(19), pages 1-17, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:7920-:d:418812
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/19/7920/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/19/7920/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Burke, Edmund K. & Curtois, Timothy & Post, Gerhard & Qu, Rong & Veltman, Bart, 2008. "A hybrid heuristic ordering and variable neighbourhood search for the nurse rostering problem," European Journal of Operational Research, Elsevier, vol. 188(2), pages 330-341, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emir Demirović & Nysret Musliu & Felix Winter, 2019. "Modeling and solving staff scheduling with partial weighted maxSAT," Annals of Operations Research, Springer, vol. 275(1), pages 79-99, April.
    2. Vanhoucke, Mario & Maenhout, Broos, 2009. "On the characterization and generation of nurse scheduling problem instances," European Journal of Operational Research, Elsevier, vol. 196(2), pages 457-467, July.
    3. Modirkhorasani, Atiyeh & Hoseinpour, Pooya, 2024. "Decentralized exam timetabling: A solution for conducting exams during pandemics," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    4. Edmund Burke & Jingpeng Li & Rong Qu, 2012. "A Pareto-based search methodology for multi-objective nurse scheduling," Annals of Operations Research, Springer, vol. 196(1), pages 91-109, July.
    5. Ran Liu & Xiaolan Xie, 2018. "Physician Staffing for Emergency Departments with Time-Varying Demand," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 588-607, August.
    6. Topaloglu, Seyda, 2009. "A shift scheduling model for employees with different seniority levels and an application in healthcare," European Journal of Operational Research, Elsevier, vol. 198(3), pages 943-957, November.
    7. Burak Bilgin & Patrick Causmaecker & Benoît Rossie & Greet Vanden Berghe, 2012. "Local search neighbourhoods for dealing with a novel nurse rostering model," Annals of Operations Research, Springer, vol. 194(1), pages 33-57, April.
    8. Burke, Edmund K. & Li, Jingpeng & Qu, Rong, 2010. "A hybrid model of integer programming and variable neighbourhood search for highly-constrained nurse rostering problems," European Journal of Operational Research, Elsevier, vol. 203(2), pages 484-493, June.
    9. Burke, Edmund K. & Curtois, Tim, 2014. "New approaches to nurse rostering benchmark instances," European Journal of Operational Research, Elsevier, vol. 237(1), pages 71-81.
    10. Frederik Knust & Lin Xie, 2019. "Simulated annealing approach to nurse rostering benchmark and real-world instances," Annals of Operations Research, Springer, vol. 272(1), pages 187-216, January.
    11. E K Burke & T Curtois & L F van Draat & J-K van Ommeren & G Post, 2011. "Progress control in iterated local search for nurse rostering," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 360-367, February.
    12. Glass, Celia A. & Knight, Roger A., 2010. "The nurse rostering problem: A critical appraisal of the problem structure," European Journal of Operational Research, Elsevier, vol. 202(2), pages 379-389, April.
    13. Ademir Constantino & Dario Landa-Silva & Everton Melo & Candido Mendonça & Douglas Rizzato & Wesley Romão, 2014. "A heuristic algorithm based on multi-assignment procedures for nurse scheduling," Annals of Operations Research, Springer, vol. 218(1), pages 165-183, July.
    14. Lin, Shih-Wei & Ying, Kuo-Ching, 2014. "Minimizing shifts for personnel task scheduling problems: A three-phase algorithm," European Journal of Operational Research, Elsevier, vol. 237(1), pages 323-334.
    15. E K Burke & T Curtois & R Qu & G Vanden Berghe, 2010. "A scatter search methodology for the nurse rostering problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1667-1679, November.
    16. Michael Brusco & Renu Singh & Douglas Steinley, 2009. "Variable Neighborhood Search Heuristics for Selecting a Subset of Variables in Principal Component Analysis," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 705-726, December.
    17. Lü, Zhipeng & Hao, Jin-Kao, 2012. "Adaptive neighborhood search for nurse rostering," European Journal of Operational Research, Elsevier, vol. 218(3), pages 865-876.
    18. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    19. Kjartan Kastet Klyve & Ilankaikone Senthooran & Mark Wallace, 2023. "Nurse rostering with fatigue modelling," Health Care Management Science, Springer, vol. 26(1), pages 21-45, March.
    20. Rashwan, Wael & Abo-Hamad, Waleed & Arisha, Amr, 2015. "A system dynamics view of the acute bed blockage problem in the Irish healthcare system," European Journal of Operational Research, Elsevier, vol. 247(1), pages 276-293.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:19:p:7920-:d:418812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.