IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i17p7149-d407489.html
   My bibliography  Save this article

Edge Effects Reflect the Impact of the Agricultural Matrix on the Corticolous Lichens Found in Fragments of Cerrado Savanna in Central Brazil

Author

Listed:
  • Kelly Maria Zanuzzi Palharini

    (Laboratory of Agricultural Microbiology, Instituto Federal Goiano—Campus Rio Verde, Highway Sul Goiana, Km 01, Rio Verde 75901-970, GO, Brazil)

  • Luciana Cristina Vitorino

    (Laboratory of Agricultural Microbiology, Instituto Federal Goiano—Campus Rio Verde, Highway Sul Goiana, Km 01, Rio Verde 75901-970, GO, Brazil)

  • Gisele Cristina de Oliveira Menino

    (Herbarium of the Instituto Federal Goiano—Campus Rio Verde, Rio Verde 75901-970, GO, Brazil)

  • Layara Alexandre Bessa

    (Laboratory of Plant Mineral Nutrition, Instituto Federal Goiano—Campus Rio Verde, Rio Verde 75901-970, GO, Brazil)

Abstract

Habitat fragmentation affects lichen communities by inducing edge effects, although the dispersal of pollutants by pesticide drift from commercial crops may also provoke alterations in community structure, due to the varying sensitivity of lichen morphotypes to pollutants. In this context, we tested the hypothesis that lichen morphotype richness and diversity, and the percentage area of the trunks covered by different lichen morphotypes are modified significantly at the edges of fragments of Cerrado vegetation inserted within the agricultural matrix. We evaluated habitat fragments representing different Cerrado formations (Cerradão, Cerrado sensu stricto , and seasonal semi-deciduous forest) as well as the Emas National Park, a prominent Cerrado conservation unit. We used Generalized Linear Mixed Models (GLMMs) to test the potential of the models compiled using a mixture of phytosociological and environmental parameters, including the species, the height of the host plant ( H ), the circumference of its stem at breast height (CBH), total chlorophyll (TC), bark fissuring (BF) and pH, and illuminance (Lum), to explain the observed variation in the lichen morphotype richness and the percentage cover of the trunks by corticolous lichen morphotypes at the center and edge of the fragments. The central areas invariably had a greater diversity of morphotypes in all the fragments. The morphotypes considered highly sensitive to disturbance were not observed in edge areas, confirming a clear edge effect, as well as the influence of pesticide drift from the adjacent farmland matrix, on the structure of the lichen community. At both the edge and center sites, the larger trees (higher CBH) with less fissured bark tended to have the greatest diversity of lichen morphotypes, and more acidic barks had the greatest lichen cover. The models tested indicated that the variable tree species is an important determinant of the observed patterns of lichen morphotype richness and cover, either on its own or in association with pH or CBH + pH. The analyses also indicated that all the variables tested are important in some way for the definition of the percentage cover of the host trunks. The present study contributes to the understanding of the diversity of the corticolous lichen communities in the remaining fragments of Cerrado vegetation and the effects of the agricultural matrix on this community. The lichen may thus play a role as indicators of impact on other species, these organisms may provide important insights for the further investigation of the disturbance caused by the agricultural matrix on the communities of other groups of organisms.

Suggested Citation

  • Kelly Maria Zanuzzi Palharini & Luciana Cristina Vitorino & Gisele Cristina de Oliveira Menino & Layara Alexandre Bessa, 2020. "Edge Effects Reflect the Impact of the Agricultural Matrix on the Corticolous Lichens Found in Fragments of Cerrado Savanna in Central Brazil," Sustainability, MDPI, vol. 12(17), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7149-:d:407489
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/17/7149/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/17/7149/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Norman Myers & Russell A. Mittermeier & Cristina G. Mittermeier & Gustavo A. B. da Fonseca & Jennifer Kent, 2000. "Biodiversity hotspots for conservation priorities," Nature, Nature, vol. 403(6772), pages 853-858, February.
    2. Bernard W T Coetzee & Kevin J Gaston & Steven L Chown, 2014. "Local Scale Comparisons of Biodiversity as a Test for Global Protected Area Ecological Performance: A Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-11, August.
    3. Claudia L. Gray & Samantha L. L. Hill & Tim Newbold & Lawrence N. Hudson & Luca Börger & Sara Contu & Andrew J. Hoskins & Simon Ferrier & Andy Purvis & Jörn P. W. Scharlemann, 2016. "Local biodiversity is higher inside than outside terrestrial protected areas worldwide," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Santiago Castillo & Camilo Andrés Correa Ayram & Clara L. Matallana Tobón & Germán Corzo & Alexandra Areiza & Roy González-M. & Felipe Serrano & Luis Chalán Briceño & Felipe Sánchez Puertas & Ale, 2020. "Connectivity of Protected Areas: Effect of Human Pressure and Subnational Contributions in the Ecoregions of Tropical Andean Countries," Land, MDPI, vol. 9(8), pages 1-19, July.
    2. Patricia A. Henríquez-Piskulich & Constanza Schapheer & Nicolas J. Vereecken & Cristian Villagra, 2021. "Agroecological Strategies to Safeguard Insect Pollinators in Biodiversity Hotspots: Chile as a Case Study," Sustainability, MDPI, vol. 13(12), pages 1-31, June.
    3. Kaikai Dong & Guanglei Hou & Dandan Xu & Honglin He & Zhaoli Liu, 2018. "A Method to Compare the Biodiversity Conservation Effectiveness between Regions based on a Reference Condition," Sustainability, MDPI, vol. 10(10), pages 1-14, October.
    4. Nigel Dudley & Adrian Phillips & Thora Amend & Jessica Brown & Sue Stolton, 2016. "Evidence for Biodiversity Conservation in Protected Landscapes," Land, MDPI, vol. 5(4), pages 1-12, November.
    5. Salman, M.M. & Kharroubi, S. & Itani, M. & Talhouk, S.N., 2020. "Using IUCN protected areas management categories as a tool to assess youth preferences for local management of an Important Plant Area (IPA) in Lebanon," Land Use Policy, Elsevier, vol. 99(C).
    6. Guadilla-Sáez, Sara & Pardo-de-Santayana, Manuel & Reyes-García, Victoria, 2020. "Forest commons, traditional community ownership and ecological consequences: Insights from Spain," Forest Policy and Economics, Elsevier, vol. 112(C).
    7. Jaraíz-Cabanillas, Francisco Javier & Mora-Aliseda, Julián & Jeong, Jin Su & Garrido-Velarde, Jacinto, 2018. "Methodological proposal to classify and delineate natural protected areas. Study case: Region of Extremadura, Spain," Land Use Policy, Elsevier, vol. 79(C), pages 310-319.
    8. Kubacka, Marta & Żywica, Patryk & Vila Subirós, Josep & Bródka, Sylwia & Macias, Andrzej, 2022. "How do the surrounding areas of national parks work in the context of landscape fragmentation? A case study of 159 protected areas selected in 11 EU countries," Land Use Policy, Elsevier, vol. 113(C).
    9. Guangdong Li & Chuanglin Fang & Yingjie Li & Zhenbo Wang & Siao Sun & Sanwei He & Wei Qi & Chao Bao & Haitao Ma & Yupeng Fan & Yuxue Feng & Xiaoping Liu, 2022. "Global impacts of future urban expansion on terrestrial vertebrate diversity," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Patricia P.A. Henríquez‐piskulich & Constanza Schapheer & Nicolas Vereecken & Cristian Villagra, 2021. "Agroecological strategies to safeguard insect pollinators in biodiversity hotspots: Chile as a case study," ULB Institutional Repository 2013/328659, ULB -- Universite Libre de Bruxelles.
    11. Xu, Xibao & Jiang, Bo & Chen, Minkun & Bai, Yang & Yang, Guishan, 2020. "Strengthening the effectiveness of nature reserves in representing ecosystem services: The Yangtze River Economic Belt in China," Land Use Policy, Elsevier, vol. 96(C).
    12. Xuhui Sun & Yicong Cao & Xiaobin He & Rongxing Wang & Peng Zeng & Yanpeng Li & Zhipang Huang & Wen Xiao, 2022. "Administrative Level May Be the Key Factor to Improve Protection Effectiveness of Nature Reserves in China," Sustainability, MDPI, vol. 14(8), pages 1-11, April.
    13. Laxmi D. Bhatta & Sunita Chaudhary & Anju Pandit & Himlal Baral & Partha J. Das & Nigel E. Stork, 2016. "Ecosystem Service Changes and Livelihood Impacts in the Maguri-Motapung Wetlands of Assam, India," Land, MDPI, vol. 5(2), pages 1-14, June.
    14. McLennan, D. & Sharma, R., 2012. "The Delivering Ecological Services Index (DESI)," Working papers 119, Rimisp Latin American Center for Rural Development.
    15. Caviedes, Julián & Ibarra, José Tomás & Calvet-Mir, Laura & Álvarez-Fernández, Santiago & Junqueira, André Braga, 2024. "Indigenous and local knowledge on social-ecological changes is positively associated with livelihood resilience in a Globally Important Agricultural Heritage System," Agricultural Systems, Elsevier, vol. 216(C).
    16. Maeda, Eduardo Eiji & Clark, Barnaby J.F. & Pellikka, Petri & Siljander, Mika, 2010. "Modelling agricultural expansion in Kenya's Eastern Arc Mountains biodiversity hotspot," Agricultural Systems, Elsevier, vol. 103(9), pages 609-620, November.
    17. Jaiswal, Sreeja & Balietti, Anca & Schäffer, Daniel, 2023. "Environmental Protection and Labor Market Composition," Working Papers 0736, University of Heidelberg, Department of Economics.
    18. Chomitz, Kenneth M. & Thomas, Timothy S. & Brandão, Antônio Salazar P., 2005. "The economic and environmental impact of trade in forest reserve obligations: a simulation analysis of options for dealing with habitat heterogeneity," Revista de Economia e Sociologia Rural (RESR), Sociedade Brasileira de Economia e Sociologia Rural, vol. 43(4), January.
    19. Elisa Barbour & Lara Kueppers, 2012. "Conservation and management of ecological systems in a changing California," Climatic Change, Springer, vol. 111(1), pages 135-163, March.
    20. Tyler M Harms & Kevin T Murphy & Xiaodan Lyu & Shane S Patterson & Karen E Kinkead & Stephen J Dinsmore & Paul W Frese, 2017. "Using landscape habitat associations to prioritize areas of conservation action for terrestrial birds," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-21, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7149-:d:407489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.