IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i16p6608-d399369.html
   My bibliography  Save this article

Effect of Reversal of Conservation Tillage on Soil Nutrient Availability and Crop Nutrient Uptake in Soybean in the Vertisols of Central India

Author

Listed:
  • Dharmendra Singh

    (ICAR-Indian Institute of Soil Science, Nabibagh, Bhopal 462 038, Madhya Pradesh, India)

  • Sangeeta Lenka

    (ICAR-Indian Institute of Soil Science, Nabibagh, Bhopal 462 038, Madhya Pradesh, India)

  • Narendra Kumar Lenka

    (ICAR-Indian Institute of Soil Science, Nabibagh, Bhopal 462 038, Madhya Pradesh, India)

  • Sudhir Kumar Trivedi

    (Department of Soil Science and Agriculture Chemistry, College of Agriculture, Gwalior 474 001, Madhya Pradesh, India)

  • Sudeshna Bhattacharjya

    (ICAR-Indian Institute of Soil Science, Nabibagh, Bhopal 462 038, Madhya Pradesh, India)

  • Sonalika Sahoo

    (ICAR-National Bureau of Soil Survey and Land Use Planning, Amravati Road, Nagpur 440 033, Maharashtra, India)

  • Jayanta Kumar Saha

    (ICAR-Indian Institute of Soil Science, Nabibagh, Bhopal 462 038, Madhya Pradesh, India)

  • Ashok Kumar Patra

    (ICAR-Indian Institute of Soil Science, Nabibagh, Bhopal 462 038, Madhya Pradesh, India)

Abstract

Effect of conservation tillage on crop performance and soil properties has been studied extensively under different agro-climatic situations. However, the impact of reversal from conservation tillage to conventional tillage on crop growth and soil nutrient release is rarely addressed. Thus, this study was conducted by converting half of the eight years old conservation tillage experiment to the conventional one with a similar level of residue return to compare the effect on soil nutrient availability and nutrient uptake in soybean crops in the Vertisols of Central India. The conservation tillage treatments included no-tillage (NT) and reduced tillage (RT) with 100% NPK (T1), 100% NPK + farmyard manure (FYM) at 1.0 Mg-carbon (C)/ha (T2), and 100% NPK + FYM at 2.0 Mg-C/ha (T3). After eight years of the experiment, the RT and NT treatments were subjected to conventional tillage, and thus the tillage treatments were RT-CT, RT, NT, and NT-CT. After tillage reversal for three growing seasons, soybean yield and nutrient uptake (N, P, K) got significantly influenced by the tillage and nutrient management. Averaged across nutrient treatments, NT showed highest soil organic carbon (SOC) content (8.4 g/kg) in the surface 0–5 cm layer. However, at 5–15 cm depth, the SOC was greater in the RT-CT treatment by 14% over RT and by 5% in the NT-CT treatment over NT. The soil nutrient availability (N and P) was not significantly ( p > 0.05) affected by the interaction effect of tillage and nutrient on the surface soil layer (0–5 cm). Interaction effect of tillage and nutrient was significant on available P content at 5–15 cm soil depth. In contrast to N, soil available P relatively increased with reversal of tillage in both NT and RT. Tillage reversal (NT-CT, RT-CT) and RT had significantly higher available potassium than NT in 0–5 and 5–15 cm soil layers. Among the treatments, NT-CT-T3 showed significantly higher seed N (85.49 kg/ha), P (10.05 kg/ha), and K (24.51 kg/ha) uptake in soybean. The study indicates conventional tillage with residue returns and integrated nutrient management could be a feasible alternative to overcome the limitations of no-till farming in the deep black Vertisols of Central India.

Suggested Citation

  • Dharmendra Singh & Sangeeta Lenka & Narendra Kumar Lenka & Sudhir Kumar Trivedi & Sudeshna Bhattacharjya & Sonalika Sahoo & Jayanta Kumar Saha & Ashok Kumar Patra, 2020. "Effect of Reversal of Conservation Tillage on Soil Nutrient Availability and Crop Nutrient Uptake in Soybean in the Vertisols of Central India," Sustainability, MDPI, vol. 12(16), pages 1-15, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6608-:d:399369
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/16/6608/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/16/6608/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiang Liu & Hongwei Xu & Xingmin Mu & Guangju Zhao & Peng Gao & Wenyi Sun, 2020. "Effects of Different Fertilization Regimes on Crop Yield and Soil Water Use Efficiency of Millet and Soybean," Sustainability, MDPI, vol. 12(10), pages 1-13, May.
    2. Gergely Jakab & Balázs Madarász & Judit Alexandra Szabó & Adrienn Tóth & Dóra Zacháry & Zoltán Szalai & Ádám Kertész & Jeremy Dyson, 2017. "Infiltration and Soil Loss Changes during the Growing Season under Ploughing and Conservation Tillage," Sustainability, MDPI, vol. 9(10), pages 1-13, September.
    3. Dyck, Miles & Malhi, Sukhdev S. & Nyborg, Marvin & Puurveen, Dyck, 2016. "Effects of Short-term Tillage of a Long-term No-Till Land on Crop Yield and Nutrient Uptake in Two Contrasting Soil Types," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 5(3).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Allam & Emanuele Radicetti & Valentina Quintarelli & Verdiana Petroselli & Sara Marinari & Roberto Mancinelli, 2022. "Influence of Organic and Mineral Fertilizers on Soil Organic Carbon and Crop Productivity under Different Tillage Systems: A Meta-Analysis," Agriculture, MDPI, vol. 12(4), pages 1-19, March.
    2. Juan Antonio Villarreal Sanchez & Lourdes Diaz Jimenez & Jose Concepcion Escobedo Bocardo & Jose Omar Cardenas Palomo & Nereida Elizabeth Guerra Escamilla & Jesus Salvador Luna Alvarez, 2018. "Effect of Marine Microorganisms on Limestone as an Approach for Calcareous Soil," Sustainability, MDPI, vol. 10(6), pages 1-11, June.
    3. Federico Calcagno & Elio Romano & Nicola Furnitto & Arman Jamali & Sabina Failla, 2022. "Remote Sensing Monitoring of Durum Wheat under No Tillage Practices by Means of Spectral Indices Interpretation: A Preliminary Study," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    4. Xiangjian Rui & Lei Nie & Yan Xu & Hong Wang, 2019. "Land Degeneration due to Water Infiltration and Sub-Erosion: A Case Study of Soil Slope Failure at the National Geological Park of Qian-an Mud Forest, China," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    5. Felicia Chețan & Cornel Chețan & Ileana Bogdan & Paula Ioana Moraru & Adrian Ioan Pop & Teodor Rusu, 2022. "Use of Vegetable Residues and Cover Crops in the Cultivation of Maize Grown in Different Tillage Systems," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    6. Jouf, C. & Lawson, L.A., 2022. "European farmers’ responses to higher commodity prices: Cropland expansion or forestlands preservation?," Ecological Economics, Elsevier, vol. 191(C).
    7. Qiang Liu & Hongwei Xu & Haijie Yi, 2021. "Impact of Fertilizer on Crop Yield and C:N:P Stoichiometry in Arid and Semi-Arid Soil," IJERPH, MDPI, vol. 18(8), pages 1-12, April.
    8. Helder Zavale & Greenwell Matchaya & Delfim Vilissa & Charles Nhemachena & Sibusiso Nhlengethwa & Duque Wilson, 2020. "Dynamics of the Fertilizer Value Chain in Mozambique," Sustainability, MDPI, vol. 12(11), pages 1-18, June.
    9. Gábor Timár & Gusztáv Jakab & Balázs Székely, 2024. "A Step from Vulnerability to Resilience: Restoring the Landscape Water-Storage Capacity of the Great Hungarian Plain—An Assessment and a Proposal," Land, MDPI, vol. 13(2), pages 1-19, January.
    10. Ádám Rieder & Balázs Madarász & Judit Alexandra Szabó & Dóra Zacháry & Anna Vancsik & Marianna Ringer & Zoltán Szalai & Gergely Jakab, 2018. "Soil Organic Matter Alteration Velocity due to Land-Use Change: A Case Study under Conservation Agriculture," Sustainability, MDPI, vol. 10(4), pages 1-11, March.
    11. Andrew K. Marondedze & Brigitta Schütt, 2020. "Assessment of Soil Erosion Using the RUSLE Model for the Epworth District of the Harare Metropolitan Province, Zimbabwe," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    12. Dyck, Miles & Malhi, Sukhdev S. & Nyborg, Marvin & Puurveen, Dyck, 2016. "Effects of Short-term Tillage of a Long-term No-Till Land on Quantity and Quality of Organic C and N in Two Contrasting Soil Types," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 5(3).
    13. Peng, Zhengkai & Wang, Linlin & Xie, Junhong & Li, Lingling & Coulter, Jeffrey A. & Zhang, Renzhi & Luo, Zhuzhu & Cai, Liqun & Carberry, Peter & Whitbread, Anthony, 2020. "Conservation tillage increases yield and precipitation use efficiency of wheat on the semi-arid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 231(C).
    14. Chouaib Jouf & Laté Lawson, 2021. "European farmers’ responses to higher commodity prices: cropland expansion or forestlands preservation?," EconomiX Working Papers 2021-10, University of Paris Nanterre, EconomiX.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:16:p:6608-:d:399369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.