IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i15p6255-d394011.html
   My bibliography  Save this article

Assessment Model of End-of-Life Costs and Waste Quantification in Selective Demolitions: Case Studies of Nearly Zero-Energy Buildings

Author

Listed:
  • Eduardo Vázquez-López

    (ArDiTec Research Group, Departament of Architectural Constructions II, Higher Technichal School of Building Engineering, Universidad de Sevilla, 41012 Seville, Spain)

  • Federico Garzia

    (Institute of Renewable Energy, EURAC Research, 39100 Bolzano, Italy)

  • Roberta Pernetti

    (Institute of Renewable Energy, EURAC Research, 39100 Bolzano, Italy)

  • Jaime Solís-Guzmán

    (ArDiTec Research Group, Departament of Architectural Constructions II, Higher Technichal School of Building Engineering, Universidad de Sevilla, 41012 Seville, Spain)

  • Madelyn Marrero

    (ArDiTec Research Group, Departament of Architectural Constructions II, Higher Technichal School of Building Engineering, Universidad de Sevilla, 41012 Seville, Spain)

Abstract

Innovative designs, such as those taking place in nearly zero-energy buildings, need to tackle Life Cycle Cost, because reducing the impact of use can carry other collateral and unexpected costs. For example, it is interesting to include the evaluation of end-of-life costs by introducing future activities of selective dismantling and waste management, to also improve the environmental performance of the demotion project. For this purpose, it is necessary to develop methods that relate the process of selective demolition to the waste quantification and the costs derived from its management. In addition, a sensitivity analysis of end-of-life parameters allows different construction types, waste treatment options, and waste management costs to be compared. The assessment of end-of-life costs in the present work is developed by a case-based reasoning. Cost data are obtained from three actual studies which are part of the H2020 CRAVEzero project (Cost Reduction and Market Acceleration for Viable Nearly Zero-Energy Buildings). Results show that end-of-life costs are similar to traditional building typologies. The most influential materials are part of the substructure and structure of the building, such as concrete and steel products.

Suggested Citation

  • Eduardo Vázquez-López & Federico Garzia & Roberta Pernetti & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Assessment Model of End-of-Life Costs and Waste Quantification in Selective Demolitions: Case Studies of Nearly Zero-Energy Buildings," Sustainability, MDPI, vol. 12(15), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6255-:d:394011
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/15/6255/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/15/6255/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Madelyn Marrero & Antonio Ramirez-De-Arellano, 2010. "The building cost system in Andalusia: application to construction and demolition waste management," Construction Management and Economics, Taylor & Francis Journals, vol. 28(5), pages 495-507.
    2. Sung Kin Pun & Chunlu Liu & Craig Langston, 2006. "Case study of demolition costs of residential buildings," Construction Management and Economics, Taylor & Francis Journals, vol. 24(9), pages 967-976.
    3. Heiselberg, Per & Brohus, Henrik & Hesselholt, Allan & Rasmussen, Henrik & Seinre, Erkki & Thomas, Sara, 2009. "Application of sensitivity analysis in design of sustainable buildings," Renewable Energy, Elsevier, vol. 34(9), pages 2030-2036.
    4. Tian, Wei, 2013. "A review of sensitivity analysis methods in building energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 411-419.
    5. Islam, Hamidul & Jollands, Margaret & Setunge, Sujeeva, 2015. "Life cycle assessment and life cycle cost implication of residential buildings—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 129-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pilar Mercader-Moyano & Paula M. Esquivias, 2020. "Decarbonization and Circular Economy in the Sustainable Development and Renovation of Buildings and Neighbourhoods," Sustainability, MDPI, vol. 12(19), pages 1-6, September.
    2. Patricia González-Vallejo & Radu Muntean & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool," Sustainability, MDPI, vol. 12(17), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    2. Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.
    3. Su, Ziyi & Li, Xiaofeng, 2022. "Extraction of key parameters and simplification of sub-system energy models using sensitivity analysis in subway stations," Energy, Elsevier, vol. 261(PA).
    4. Lu, Yuehong & Wang, Shengwei & Yan, Chengchu & Shan, Kui, 2015. "Impacts of renewable energy system design inputs on the performance robustness of net zero energy buildings," Energy, Elsevier, vol. 93(P2), pages 1595-1606.
    5. Abdo Abdullah Ahmed Gassar & Choongwan Koo & Tae Wan Kim & Seung Hyun Cha, 2021. "Performance Optimization Studies on Heating, Cooling and Lighting Energy Systems of Buildings during the Design Stage: A Review," Sustainability, MDPI, vol. 13(17), pages 1-47, September.
    6. Waqas Ahmed Mahar & Griet Verbeeck & Sigrid Reiter & Shady Attia, 2020. "Sensitivity Analysis of Passive Design Strategies for Residential Buildings in Cold Semi-Arid Climates," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
    7. Ramos Ruiz, Germán & Fernández Bandera, Carlos & Gómez-Acebo Temes, Tomás & Sánchez-Ostiz Gutierrez, Ana, 2016. "Genetic algorithm for building envelope calibration," Applied Energy, Elsevier, vol. 168(C), pages 691-705.
    8. Enrico Fabrizio & Valentina Monetti, 2015. "Methodologies and Advancements in the Calibration of Building Energy Models," Energies, MDPI, vol. 8(4), pages 1-27, March.
    9. Gang, Wenjie & Augenbroe, Godfried & Wang, Shengwei & Fan, Cheng & Xiao, Fu, 2016. "An uncertainty-based design optimization method for district cooling systems," Energy, Elsevier, vol. 102(C), pages 516-527.
    10. Ma, Zhenjun & Xia, Lei & Gong, Xuemei & Kokogiannakis, Georgios & Wang, Shugang & Zhou, Xinlei, 2020. "Recent advances and development in optimal design and control of ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    11. Østergård, Torben & Jensen, Rasmus L. & Maagaard, Steffen E., 2016. "Building simulations supporting decision making in early design – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 187-201.
    12. Copiello, Sergio & Gabrielli, Laura & Bonifaci, Pietro, 2017. "Evaluation of energy retrofit in buildings under conditions of uncertainty: The prominence of the discount rate," Energy, Elsevier, vol. 137(C), pages 104-117.
    13. Tian Han & Qiong Huang & Anxiao Zhang & Qi Zhang, 2018. "Simulation-Based Decision Support Tools in the Early Design Stages of a Green Building—A Review," Sustainability, MDPI, vol. 10(10), pages 1-23, October.
    14. Singh, Ramkishore & Lazarus, I.J. & Kishore, V.V.N., 2016. "Uncertainty and sensitivity analyses of energy and visual performances of office building with external venetian blind shading in hot-dry climate," Applied Energy, Elsevier, vol. 184(C), pages 155-170.
    15. Zuo, Jian & Pullen, Stephen & Rameezdeen, Raufdeen & Bennetts, Helen & Wang, Yuan & Mao, Guozhu & Zhou, Zhihua & Du, Huibin & Duan, Huabo, 2017. "Green building evaluation from a life-cycle perspective in Australia: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 358-368.
    16. Jusselme, Thomas & Rey, Emmanuel & Andersen, Marilyne, 2018. "An integrative approach for embodied energy: Towards an LCA-based data-driven design method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 123-132.
    17. Nguyen, Anh-Tuan & Reiter, Sigrid & Rigo, Philippe, 2014. "A review on simulation-based optimization methods applied to building performance analysis," Applied Energy, Elsevier, vol. 113(C), pages 1043-1058.
    18. Xia, Lei & Ma, Zhenjun & Kokogiannakis, Georgios & Wang, Zhihua & Wang, Shugang, 2018. "A model-based design optimization strategy for ground source heat pump systems with integrated photovoltaic thermal collectors," Applied Energy, Elsevier, vol. 214(C), pages 178-190.
    19. Edwards, Richard E. & New, Joshua & Parker, Lynne E. & Cui, Borui & Dong, Jin, 2017. "Constructing large scale surrogate models from big data and artificial intelligence," Applied Energy, Elsevier, vol. 202(C), pages 685-699.
    20. Li, Hangxin & Wang, Shengwei & Cheung, Howard, 2018. "Sensitivity analysis of design parameters and optimal design for zero/low energy buildings in subtropical regions," Applied Energy, Elsevier, vol. 228(C), pages 1280-1291.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6255-:d:394011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.