IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i15p6084-d391300.html
   My bibliography  Save this article

A Smart Adaptive Switching Module Architecture Using Fuzzy Logic for an Efficient Integration of Renewable Energy Sources. A Case Study of a RES System Located in Hulubești, Romania

Author

Listed:
  • Simona-Vasilica Oprea

    (Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, Romana Square 6, 010374 Bucharest, Romania)

  • Adela Bâra

    (Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, Romana Square 6, 010374 Bucharest, Romania)

  • Ștefan Preda

    (Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, Romana Square 6, 010374 Bucharest, Romania)

  • Osman Bulent Tor

    (Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, Romana Square 6, 010374 Bucharest, Romania
    Engineering, Procurement, Research and Analysis—EPRA, Çankaya/Ankara 06800, Turkey)

Abstract

Electricity generation from renewable energy sources (RES) has a common feature, that is, it is fluctuating, available in certain amounts and only for some periods of time. Consuming this electricity when it is available should be a primary goal to enhance operation of the RES-powered generating units which are particularly operating in microgrids. Heavily influenced by weather parameters, RES-powered systems can benefit from implementation of sensors and fuzzy logic systems to dynamically adapt electric loads to the volatility of RES. This study attempts to answer the following question: How to efficiently integrate RES to power systems by means of sustainable energy solutions that involve sensors, fuzzy logic, and categorization of loads? A Smart Adaptive Switching Module (SASM) architecture, which efficiently uses electricity generation of local available RES by gradually switching electric appliances based on weather sensors, power forecast, storage system constraints and other parameters, is proposed. It is demonstrated that, without SASM, the RES generation is supposed to be curtailed in some cases, e.g., when batteries are fully charged, even though the weather conditions are favourable. In such cases, fuzzy rules of SASM securely mitigate curtailment of RES generation by supplying high power non-traditional storage appliances. A numerical case study is performed to demonstrate effectiveness of the proposed SASM architecture for a RES system located in Hulubești (Dâmbovița), Romania.

Suggested Citation

  • Simona-Vasilica Oprea & Adela Bâra & Ștefan Preda & Osman Bulent Tor, 2020. "A Smart Adaptive Switching Module Architecture Using Fuzzy Logic for an Efficient Integration of Renewable Energy Sources. A Case Study of a RES System Located in Hulubești, Romania," Sustainability, MDPI, vol. 12(15), pages 1-27, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6084-:d:391300
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/15/6084/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/15/6084/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Apajalahti, Eeva-Lotta & Lovio, Raimo & Heiskanen, Eva, 2015. "From demand side management (DSM) to energy efficiency services: A Finnish case study," Energy Policy, Elsevier, vol. 81(C), pages 76-85.
    2. Shehab Al-Sakkaf & Mahmoud Kassas & Muhammad Khalid & Mohammad A. Abido, 2019. "An Energy Management System for Residential Autonomous DC Microgrid Using Optimized Fuzzy Logic Controller Considering Economic Dispatch," Energies, MDPI, vol. 12(8), pages 1-25, April.
    3. Gabriele Lobaccaro & Salvatore Carlucci & Erica Löfström, 2016. "A Review of Systems and Technologies for Smart Homes and Smart Grids," Energies, MDPI, vol. 9(5), pages 1-33, May.
    4. Cagnano, A. & De Tuglie, E. & Mancarella, P., 2020. "Microgrids: Overview and guidelines for practical implementations and operation," Applied Energy, Elsevier, vol. 258(C).
    5. Schieweck, Alexandra & Uhde, Erik & Salthammer, Tunga & Salthammer, Lea C. & Morawska, Lidia & Mazaheri, Mandana & Kumar, Prashant, 2018. "Smart homes and the control of indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 705-718.
    6. Aghajani, G.R. & Shayanfar, H.A. & Shayeghi, H., 2017. "Demand side management in a smart micro-grid in the presence of renewable generation and demand response," Energy, Elsevier, vol. 126(C), pages 622-637.
    7. Tronchin, Lamberto & Manfren, Massimiliano & Nastasi, Benedetto, 2018. "Energy efficiency, demand side management and energy storage technologies – A critical analysis of possible paths of integration in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 341-353.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andres Pizarro-Lerma & Victor Santibañez & Ramon Garcia-Hernandez & Jorge Villalobos-Chin, 2021. "Sectorial Fuzzy Controller Plus Feedforward for the Trajectory Tracking of Robotic Arms in Joint Space," Mathematics, MDPI, vol. 9(6), pages 1-40, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morteza Zare Oskouei & Ayşe Aybike Şeker & Süleyman Tunçel & Emin Demirbaş & Tuba Gözel & Mehmet Hakan Hocaoğlu & Mehdi Abapour & Behnam Mohammadi-Ivatloo, 2022. "A Critical Review on the Impacts of Energy Storage Systems and Demand-Side Management Strategies in the Economic Operation of Renewable-Based Distribution Network," Sustainability, MDPI, vol. 14(4), pages 1-34, February.
    2. Ho-Sung Ryu & Mun-Kyeom Kim, 2020. "Two-Stage Optimal Microgrid Operation with a Risk-Based Hybrid Demand Response Program Considering Uncertainty," Energies, MDPI, vol. 13(22), pages 1-25, November.
    3. Álex Omar Topa Gavilema & José Domingo Álvarez & José Luis Torres Moreno & Manuel Pérez García, 2021. "Towards Optimal Management in Microgrids: An Overview," Energies, MDPI, vol. 14(16), pages 1-25, August.
    4. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    5. Gitelman, Lazar & Kozhevnikov, Mikhail & Ditenberg, Maksim, 2024. "Electrification as a factor in replacing hydrocarbon fuel," Energy, Elsevier, vol. 307(C).
    6. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    7. Wadim Strielkowski & Anna Sherstobitova & Patrik Rovny & Tatiana Evteeva, 2021. "Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review," Energies, MDPI, vol. 14(11), pages 1-19, May.
    8. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    9. Simona-Vasilica Oprea & Adela Bâra & Adriana Reveiu, 2018. "Informatics Solution for Energy Efficiency Improvement and Consumption Management of Householders," Energies, MDPI, vol. 11(1), pages 1-31, January.
    10. Carmen de la Cruz-Lovera & Francisco Manzano-Agugliaro & Esther Salmerón-Manzano & José-Luis de la Cruz-Fernández & Alberto-Jesus Perea-Moreno, 2019. "Date Seeds ( Phoenix dactylifera L. ) Valorization for Boilers in the Mediterranean Climate," Sustainability, MDPI, vol. 11(3), pages 1-14, January.
    11. Leonid Gitelman & Mikhail Kozhevnikov, 2017. "Electrification as a Development Driver for “Smart Citiesâ€," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 1199-1210.
    12. Hall, Stephen & Roelich, Katy, 2016. "Business model innovation in electricity supply markets: The role of complex value in the United Kingdom," Energy Policy, Elsevier, vol. 92(C), pages 286-298.
    13. Abdul K Hamid & Nsilulu T Mbungu & A. Elnady & Ramesh C Bansal & Ali A Ismail & Mohammad A AlShabi, 2023. "A systematic review of grid-connected photovoltaic and photovoltaic/thermal systems: Benefits, challenges and mitigation," Energy & Environment, , vol. 34(7), pages 2775-2814, November.
    14. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    15. Olga Bogdanova & Karīna Viskuba & Laila Zemīte, 2023. "A Review of Barriers and Enables in Demand Response Performance Chain," Energies, MDPI, vol. 16(18), pages 1-33, September.
    16. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    17. Hafize Nurgul Durmus Senyapar & Ramazan Bayindir, 2023. "The Research Agenda on Smart Grids: Foresights for Social Acceptance," Energies, MDPI, vol. 16(18), pages 1-31, September.
    18. Severinsen, A. & Myrland, Ø., 2022. "ShinyRBase: Near real-time energy saving models using reactive programming," Applied Energy, Elsevier, vol. 325(C).
    19. Mughees, Neelam & Jaffery, Mujtaba Hussain & Mughees, Anam & Ansari, Ejaz Ahmad & Mughees, Abdullah, 2023. "Reinforcement learning-based composite differential evolution for integrated demand response scheme in industrial microgrids," Applied Energy, Elsevier, vol. 342(C).
    20. Sulaiman A. Almohaimeed & Siddharth Suryanarayanan & Peter O’Neill, 2021. "Simulation Studies to Quantify the Impact of Demand Side Management on Environmental Footprint," Sustainability, MDPI, vol. 13(17), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6084-:d:391300. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.