IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i15p5906-d388161.html
   My bibliography  Save this article

CO 2 and Cost Optimization of Reinforced Concrete Cantilever Soldier Piles: A Parametric Study with Harmony Search Algorithm

Author

Listed:
  • Zülal Akbay Arama

    (Department of Civil Engineering, Istanbul University–Cerrahpaşa, Istanbul 34320, Turkey)

  • Aylin Ece Kayabekir

    (Department of Civil Engineering, Istanbul University–Cerrahpaşa, Istanbul 34320, Turkey)

  • Gebrail Bekdaş

    (Department of Civil Engineering, Istanbul University–Cerrahpaşa, Istanbul 34320, Turkey)

  • Zong Woo Geem

    (College of IT Convergence, Gachon University, Seongnam 13120, Korea)

Abstract

This paper presents the parametric modelling process of cantilever soldier pile walls based on CO 2 and cost optimization with the Harmony Search Algorithm. The study attempted to fulfil the geotechnical and structural design requirements and sustainable usage necessities simultaneously. The variants of the optimum design process are selected as the cross-sectional characteristics of cantilever soldier piles such as the length and diameter of the pile, and the other design variables are the reinforcement detailing of the pile such as the diameter and the number of reinforcement bars. Besides the volume of the concrete, the unit prices of both reinforcement and concrete are evaluated as another part of the variants. The shear and flexural strength necessities, minimum cross section of the reinforcing bars and factor of safety values are identified as the constraints of the optimization. Different objective functions are defined to provide the minimum cost, the minimum CO 2 emission and the integrated multi-objective evaluation of cost and CO 2 . In addition, the type of steel and concrete reinforcement on the optimum CO 2 emission is investigated with the use of different material emission values that are selected from current literature studies. Consequently, the results of the optimization analyses are interrogated to investigate if the attainment of both minimum CO 2 and cost balance can be achieved.

Suggested Citation

  • Zülal Akbay Arama & Aylin Ece Kayabekir & Gebrail Bekdaş & Zong Woo Geem, 2020. "CO 2 and Cost Optimization of Reinforced Concrete Cantilever Soldier Piles: A Parametric Study with Harmony Search Algorithm," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:5906-:d:388161
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/15/5906/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/15/5906/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Víctor Yepes & José V. Martí & José García, 2020. "Black Hole Algorithm for Sustainable Design of Counterfort Retaining Walls," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gebrail Bekdaş & Sinan Melih Nigdeli & Sanghun Kim & Zong Woo Geem, 2022. "Modified Harmony Search Algorithm-Based Optimization for Eco-Friendly Reinforced Concrete Frames," Sustainability, MDPI, vol. 14(6), pages 1-13, March.
    2. Celal Cakiroglu & Kamrul Islam & Gebrail Bekdaş & Sanghun Kim & Zong Woo Geem, 2021. "CO 2 Emission Optimization of Concrete-Filled Steel Tubular Rectangular Stub Columns Using Metaheuristic Algorithms," Sustainability, MDPI, vol. 13(19), pages 1-26, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aylin Ece Kayabekir & Zülal Akbay Arama & Gebrail Bekdaş & Sinan Melih Nigdeli & Zong Woo Geem, 2020. "Eco-Friendly Design of Reinforced Concrete Retaining Walls: Multi-objective Optimization with Harmony Search Applications," Sustainability, MDPI, vol. 12(15), pages 1-30, July.
    2. Khalid Almutairi & Salem Algarni & Talal Alqahtani & Hossein Moayedi & Amir Mosavi, 2022. "A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    3. José García & Victor Yepes & José V. Martí, 2020. "A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    4. José García & José V. Martí & Víctor Yepes, 2020. "The Buttressed Walls Problem: An Application of a Hybrid Clustering Particle Swarm Optimization Algorithm," Mathematics, MDPI, vol. 8(6), pages 1-22, May.
    5. Marcelo Becerra-Rozas & José Lemus-Romani & Felipe Cisternas-Caneo & Broderick Crawford & Ricardo Soto & Gino Astorga & Carlos Castro & José García, 2022. "Continuous Metaheuristics for Binary Optimization Problems: An Updated Systematic Literature Review," Mathematics, MDPI, vol. 11(1), pages 1-32, December.
    6. Cleovir José Milani & Víctor Yepes & Moacir Kripka, 2020. "Proposal of Sustainability Indicators for the Design of Small-Span Bridges," IJERPH, MDPI, vol. 17(12), pages 1-23, June.
    7. Zenonas Turskis & Kęstutis Urbonas & Danutė Sližytė & Jurgis Medzvieckas & Rimantas Mackevičius & Vaidotas Šapalas, 2020. "A Novel Integrated Approach to Solve Industrial Ground Floor Design Problems," Sustainability, MDPI, vol. 12(12), pages 1-13, June.
    8. José García & Gino Astorga & Víctor Yepes, 2021. "An Analysis of a KNN Perturbation Operator: An Application to the Binarization of Continuous Metaheuristics," Mathematics, MDPI, vol. 9(3), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:5906-:d:388161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.