IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i14p5743-d385692.html
   My bibliography  Save this article

Waste-to-Energy in the EU: The Effects of Plant Ownership, Waste Mobility, and Decentralization on Environmental Outcomes and Welfare

Author

Listed:
  • Laura Levaggi

    (Faculty of Science and Technology, University of Bozen, 36100 Bolzano, Italy)

  • Rosella Levaggi

    (Department of Economics and Management, University of Brescia, 25122 Brescia, Italy)

  • Carmen Marchiori

    (Department of Economics and Management, University of Brescia, 25122 Brescia, Italy)

  • Carmine Trecroci

    (Department of Economics and Management, University of Brescia, 25122 Brescia, Italy)

Abstract

Waste-to-energy (WtE) could prevent the production of up to 50 million tons of CO 2 emissions that would otherwise be generated by burning fossil fuels. Yet, support for a large deployment of WtE plants is not universal because there is a widespread concern that energy from waste discourages recycling practices. Moreover, incineration plants generate air pollution and chemical waste residuals and are expensive to build compared to modern landfills that have appropriate procedures for the prevention of leakage of harmful gasses. In the context of the EU, this paper aims to provide a picture of the actual role of WtE as a disposal option for municipal solid waste (MSW), enabling it to be utilized as a source of clean energy, and to address two important aspects of the debate surrounding the use of WtE; namely, (i) the relationship between WtE and recycling, and (ii) the effects of decentralization, waste mobility, and plant ownership. Finally, it reviews the role of the EU as a supranational regulator, which may allow the lower government levels (where consumer preferences are better represented) to take decisions, while taking spillovers into account.

Suggested Citation

  • Laura Levaggi & Rosella Levaggi & Carmen Marchiori & Carmine Trecroci, 2020. "Waste-to-Energy in the EU: The Effects of Plant Ownership, Waste Mobility, and Decentralization on Environmental Outcomes and Welfare," Sustainability, MDPI, vol. 12(14), pages 1-12, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5743-:d:385692
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/14/5743/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/14/5743/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Massimiliano Mazzanti & Roberto Zoboli, 2009. "Municipal Waste Kuznets Curves: Evidence on Socio-Economic Drivers and Policy Effectiveness from the EU," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 44(2), pages 203-230, October.
    2. James Alm & H. Spencer Banzhaf, 2012. "Designing Economic Instruments For The Environment In A Decentralized Fiscal System," Journal of Economic Surveys, Wiley Blackwell, vol. 26(2), pages 177-202, April.
    3. Massimiliano Mazzanti & Anna Montini & Francesco Nicolli, 2012. "Waste dynamics in economic and policy transitions: decoupling, convergence and spatial effects," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 55(5), pages 563-581, August.
    4. Malinauskaite, J. & Jouhara, H. & Czajczyńska, D. & Stanchev, P. & Katsou, E. & Rostkowski, P. & Thorne, R.J. & Colón, J. & Ponsá, S. & Al-Mansour, F. & Anguilano, L. & Krzyżyńska, R. & López, I.C. & , 2017. "Municipal solid waste management and waste-to-energy in the context of a circular economy and energy recycling in Europe," Energy, Elsevier, vol. 141(C), pages 2013-2044.
    5. Cecere, Grazia & Mancinelli, Susanna & Mazzanti, Massimiliano, 2014. "Waste prevention and social preferences: the role of intrinsic and extrinsic motivations," Ecological Economics, Elsevier, vol. 107(C), pages 163-176.
    6. H. Spencer Banzhaf & B. Andrew Chupp, 2010. "Heterogeneous Harm vs. Spatial Spillovers: Environmental Federalism and US Air Pollution," NBER Working Papers 15666, National Bureau of Economic Research, Inc.
    7. Dijkgraaf, Elbert & Vollebergh, Herman R.J., 2004. "Burn or bury? A social cost comparison of final waste disposal methods," Ecological Economics, Elsevier, vol. 50(3-4), pages 233-247, October.
    8. John A. List & Aart de Zeeuw (ed.), 2002. "Recent Advances in Environmental Economics," Books, Edward Elgar Publishing, number 2728.
    9. W. Kip Viscusi & Joel Huber & Jason Bell, 2011. "Promoting Recycling: Private Values, Social Norms, and Economic Incentives," American Economic Review, American Economic Association, vol. 101(3), pages 65-70, May.
    10. Gradus, Raymond H.J.M. & Nillesen, Paul H.L. & Dijkgraaf, Elbert & van Koppen, Rick J., 2017. "A Cost-effectiveness Analysis for Incineration or Recycling of Dutch Household Plastic Waste," Ecological Economics, Elsevier, vol. 135(C), pages 22-28.
    11. D'Amato, Alessio & Mancinelli, Susanna & Zoli, Mariangela, 2016. "Complementarity vs substitutability in waste management behaviors," Ecological Economics, Elsevier, vol. 123(C), pages 84-94.
    12. Miranda, Marie Lynn & Hale, Brack, 1997. "Waste not, want not: the private and social costs of waste-to-energy production," Energy Policy, Elsevier, vol. 25(6), pages 587-600, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Kurbatova & Hani Ahmed Abu-Qdais, 2020. "Using Multi-Criteria Decision Analysis to Select Waste to Energy Technology for a Mega City: The Case of Moscow," Sustainability, MDPI, vol. 12(23), pages 1-18, November.
    2. Dzintra Atstaja & Natalija Cudecka-Purina & Viktor Koval & Jekaterina Kuzmina & Janis Butkevics & Hanna Hrinchenko, 2024. "Waste-to-Energy in the Circular Economy Transition and Development of Resource-Efficient Business Models," Energies, MDPI, vol. 17(16), pages 1-23, August.
    3. Yaqub, Z.T. & Oboirien, B.O. & Leion, H., 2024. "Process optimization of chemical looping combustion of solid waste/biomass using machine learning algorithm," Renewable Energy, Elsevier, vol. 225(C).
    4. Patel, Sanjay K.S. & Das, Devashish & Kim, Sun Chang & Cho, Byung-Kwan & Kalia, Vipin Chandra & Lee, Jung-Kul, 2021. "Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Rashid Maqbool & Yahya Rashid & Saleha Ashfaq, 2022. "Renewable energy project success: Internal versus external stakeholders' satisfaction and influences of power‐interest matrix," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1542-1561, December.
    6. Petri Penttinen & Jussi Vimpari & Seppo Junnila, 2021. "Optimal Seasonal Heat Storage in a District Heating System with Waste Incineration," Energies, MDPI, vol. 14(12), pages 1-15, June.
    7. Tahereh Malmir & Saeed Ranjbar & Ursula Eicker, 2020. "Improving Municipal Solid Waste Management Strategies of Montréal (Canada) Using Life Cycle Assessment and Optimization of Technology Options," Energies, MDPI, vol. 13(21), pages 1-15, October.
    8. Madurai Elavarasan, Rajvikram & Pugazhendhi, Rishi & Irfan, Muhammad & Mihet-Popa, Lucian & Khan, Irfan Ahmad & Campana, Pietro Elia, 2022. "State-of-the-art sustainable approaches for deeper decarbonization in Europe – An endowment to climate neutral vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Piotr Kordel & Radosław Wolniak, 2021. "Technology Entrepreneurship and the Performance of Enterprises in the Conditions of Covid-19 Pandemic: The Fuzzy Set Analysis of Waste to Energy Enterprises in Poland," Energies, MDPI, vol. 14(13), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Degli Antoni, Giacomo & Vittucci Marzetti, Giuseppe, 2019. "Recycling and Waste Generation: An Estimate of the Source Reduction Effect of Recycling Programs," Ecological Economics, Elsevier, vol. 161(C), pages 321-329.
    2. Agovino, Massimiliano & Cerciello, Massimiliano & Javed, Aamir & Rapposelli, Agnese, 2023. "Environmental legislation and waste management efficiency in Italian regions in view of circular economy goals," Utilities Policy, Elsevier, vol. 85(C).
    3. Luisa Corrado & Andrea Fazio & Alessandra Pelloni, 2020. "Pro-environmental attitudes, local environmental conditions and recycling behavior," Working Paper series 20-21, Rimini Centre for Economic Analysis, revised Nov 2021.
    4. D'Amato, Alessio & Mancinelli, Susanna & Zoli, Mariangela, 2016. "Complementarity vs substitutability in waste management behaviors," Ecological Economics, Elsevier, vol. 123(C), pages 84-94.
    5. Agovino, Massimiliano & Cerciello, Massimiliano & Musella, Gaetano, 2019. "The effects of neighbour influence and cultural consumption on separate waste collection. Theoretical framework and empirical investigation," Ecological Economics, Elsevier, vol. 166(C), pages 1-1.
    6. Gilli, Marianna & Nicolli, Francesco & Farinelli, Paola, 2018. "Behavioural attitudes towards waste prevention and recycling," Ecological Economics, Elsevier, vol. 154(C), pages 294-305.
    7. Laura Levaggi & Rosella Levaggi & Carmine Trecroci, 2015. "Waste disposal and decentralisation: a welfare approach," Working papers 17, Società Italiana di Economia Pubblica.
    8. Alessio D'Amato & Susanna Mancinelli & Mariangela Zoli, 2014. "Two Shades of (Warm) Glow: multidimensional intrinsic motivation, waste reduction and recycling," SEEDS Working Papers 2114, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Aug 2014.
    9. Gradus, Raymond H.J.M. & Nillesen, Paul H.L. & Dijkgraaf, Elbert & van Koppen, Rick J., 2017. "A Cost-effectiveness Analysis for Incineration or Recycling of Dutch Household Plastic Waste," Ecological Economics, Elsevier, vol. 135(C), pages 22-28.
    10. Cecere, Grazia & Mancinelli, Susanna & Mazzanti, Massimiliano, 2014. "Waste prevention and social preferences: the role of intrinsic and extrinsic motivations," Ecological Economics, Elsevier, vol. 107(C), pages 163-176.
    11. Halkos, George & Managi, Shunsuke, 2023. "New developments in the disciplines of environmental and resource economics," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 513-522.
    12. Eshet, Tzipi & Ayalon, Ofira & Shechter, Mordechai, 2006. "Valuation of externalities of selected waste management alternatives: A comparative review and analysis," Resources, Conservation & Recycling, Elsevier, vol. 46(4), pages 335-364.
    13. D'Amato, Alessio & Giaccherini, Matilde & Zoli, Mariangela, 2019. "The Role of Information Sources and Providers in Shaping Green Behaviors. Evidence from Europe," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    14. Rosella Levaggi & Paolo M. Panteghini, 2021. "Public expenditure spillovers: an explanation for heterogeneous tax reaction functions," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 28(3), pages 497-514, June.
    15. Agnès Festré & Pierre Garrouste & Ankinée Kirakozian & Mira Toumi, 2017. "The Pen Might Be Mightier than the Sword: How Third-party Advice or Sanction Impacts on Pro-environmental Behavior," GREDEG Working Papers 2017-15, Groupe de REcherche en Droit, Economie, Gestion (GREDEG CNRS), Université Côte d'Azur, France, revised Aug 2017.
    16. Broberg, Thomas & Dijkgraaf, Elbert & Meens-Eriksson, Sef, 2022. "Burn or let them bury? The net social cost of producing district heating from imported waste," Energy Economics, Elsevier, vol. 105(C).
    17. Valentina Iafolla & Massimiliano Mazzanti & Francesco Nicolli, 2010. "Rifiuti generati, rifiuti in discarica ed efficacia delle politiche ambientali in Europa," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 0(2), pages 103-135.
    18. Valente, Marica, 2023. "Policy evaluation of waste pricing programs using heterogeneous causal effect estimation," Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
    19. Carmen Avilés-Palacios & Ana Rodríguez-Olalla, 2021. "The Sustainability of Waste Management Models in Circular Economies," Sustainability, MDPI, vol. 13(13), pages 1-19, June.
    20. Brian Chi-ang Lin & Siqi Zheng & Ankinée Kirakozian, 2016. "One Without The Other? Behavioural And Incentive Policies For Household Waste Management," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 526-551, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5743-:d:385692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.