IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i14p5577-d382915.html
   My bibliography  Save this article

Experimental Air Impingement Crossflow Comparison and Theoretical Application to Photovoltaic Efficiency Improvement

Author

Listed:
  • Pablo Martínez-Filgueira

    (CS Centro Stirling S. Coop., Avda. Álava 3, 20550 Aretxabaleta, Spain
    Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain)

  • Ekaitz Zulueta

    (Automatic Control and System Engineering Department, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain)

  • Ander Sánchez-Chica

    (Automatic Control and System Engineering Department, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain)

  • Gustavo García

    (CS Centro Stirling S. Coop., Avda. Álava 3, 20550 Aretxabaleta, Spain)

  • Unai Fernandez-Gamiz

    (Nuclear Engineering and Fluid Mechanics Department, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain)

  • Josu Soriano

    (CS Centro Stirling S. Coop., Avda. Álava 3, 20550 Aretxabaleta, Spain)

Abstract

The photovoltaic cell temperature is a key factor in solar energy harvesting. Solar radiation raises temperature on the cell, lowering its peak efficiency. Air jet impingement is a high heat transfer rate system and has been previously used to cool the back surface of photovoltaic modules and cells. In this work, an experimental comparison of the cooling performance of two different air jet impingement crossflow schemes was performed. Crossflow is defined as the air mass interacting with a certain jet modifying its movement. This leads to a change in its heat exchange capabilities and is related with the inlet-outlet arrangement of the fluid. In this work, zero and minimum crossflow schemes were compared. The main contribution of this work considered the consumption of the flow supplying devices to determine the most suitable system. The best configuration increased the net power output of the cell by 6.60%. These results show that air impingement cooling can play a role in increasing photovoltaic profitability. In terms of uniformity, on small impingement plates with a low number of nozzles, the advantages expected from the zero crossflow configuration did not stand out.

Suggested Citation

  • Pablo Martínez-Filgueira & Ekaitz Zulueta & Ander Sánchez-Chica & Gustavo García & Unai Fernandez-Gamiz & Josu Soriano, 2020. "Experimental Air Impingement Crossflow Comparison and Theoretical Application to Photovoltaic Efficiency Improvement," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5577-:d:382915
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/14/5577/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/14/5577/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meral, Mehmet Emin & Dinçer, Furkan, 2011. "A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2176-2184, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xi & Zhu, Qingyuan & Li, Xingchen & Pan, Yinghao, 2023. "The impact of government subsidy on photovoltaic enterprises independent innovation based on the evolutionary game theory," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad Abuelrub & Osama Saadeh & Hussein M. K. Al-Masri, 2018. "Scenario Aggregation-Based Grid-Connected Photovoltaic Plant Design," Sustainability, MDPI, vol. 10(4), pages 1-13, April.
    2. Obiwulu, Anthony Umunnakwe & Erusiafe, Nald & Olopade, Muteeu Abayomi & Nwokolo, Samuel Chukwujindu, 2020. "Modeling and optimization of back temperature models of mono-crystalline silicon modules with special focus on the effect of meteorological and geographical parameters on PV performance," Renewable Energy, Elsevier, vol. 154(C), pages 404-431.
    3. Memon, Mudasir Ahmed & Mekhilef, Saad & Mubin, Marizan & Aamir, Muhammad, 2018. "Selective harmonic elimination in inverters using bio-inspired intelligent algorithms for renewable energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2235-2253.
    4. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    5. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Tyagi, V.V. & Rahim, Nurul A.A. & Rahim, N.A. & Selvaraj, Jeyraj A./L., 2013. "Progress in solar PV technology: Research and achievement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 443-461.
    7. Abednego Oscar Tanuwijava & Ching Jenq Ho & Chi-Ming Lai & Chao-Yang Huang, 2013. "Numerical Investigation of the Thermal Management Performance of MEPCM Modules for PV Applications," Energies, MDPI, vol. 6(8), pages 1-15, August.
    8. Wang, Zhaohua & Li, Yi & Wang, Ke & Huang, Zhimin, 2017. "Environment-adjusted operational performance evaluation of solar photovoltaic power plants: A three stage efficiency analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1153-1162.
    9. Veena, P. & Indragandhi, V. & Jeyabharath, R. & Subramaniyaswamy, V., 2014. "Review of grid integration schemes for renewable power generation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 628-641.
    10. Heo, Jae & Song, Kwonsik & Han, SangUk & Lee, Dong-Eun, 2021. "Multi-channel convolutional neural network for integration of meteorological and geographical features in solar power forecasting," Applied Energy, Elsevier, vol. 295(C).
    11. Tang, Yong & Sun, Honghang & Yao, Qiang & Wang, Yibo, 2014. "The selection of key technologies by the silicon photovoltaic industry based on the Delphi method and AHP (analytic hierarchy process): Case study of China," Energy, Elsevier, vol. 75(C), pages 474-482.
    12. Desikan Ramesh & Mohanrangan Chandrasekaran & Raga Palanisamy Soundararajan & Paravaikkarasu Pillai Subramanian & Vijayakumar Palled & Deivasigamani Praveen Kumar, 2022. "Solar-Powered Plant Protection Equipment: Perspective and Prospects," Energies, MDPI, vol. 15(19), pages 1-21, October.
    13. Pavlovic, Tomislav M. & Milosavljevic, Dragana D. & Mirjanic, Dragoljub & Pantic, Lana S. & Radonjic, Ivana S. & Pirsl, Danica, 2013. "Assessments and perspectives of PV solar power engineering in the Republic of Srpska (Bosnia and Herzegovina)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 119-133.
    14. Daxini, Rajiv & Sun, Yanyi & Wilson, Robin & Wu, Yupeng, 2022. "Direct spectral distribution characterisation using the Average Photon Energy for improved photovoltaic performance modelling," Renewable Energy, Elsevier, vol. 201(P1), pages 1176-1188.
    15. Yazdani, Hamed & Yaghoubi, Mahmood, 2021. "Techno-economic study of photovoltaic systems performance in Shiraz, Iran," Renewable Energy, Elsevier, vol. 172(C), pages 251-262.
    16. Sarver, Travis & Al-Qaraghuli, Ali & Kazmerski, Lawrence L., 2013. "A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 698-733.
    17. Adnan Aslam & Naseer Ahmed & Safian Ahmed Qureshi & Mohsen Assadi & Naveed Ahmed, 2022. "Advances in Solar PV Systems; A Comprehensive Review of PV Performance, Influencing Factors, and Mitigation Techniques," Energies, MDPI, vol. 15(20), pages 1-52, October.
    18. Mekhilef, S. & Saidur, R. & Kamalisarvestani, M., 2012. "Effect of dust, humidity and air velocity on efficiency of photovoltaic cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2920-2925.
    19. Babatunde, A.A. & Abbasoglu, S. & Senol, M., 2018. "Analysis of the impact of dust, tilt angle and orientation on performance of PV Plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1017-1026.
    20. Milosavljević, Dragana D. & Pavlović, Tomislav M. & Mirjanić, Dragoljub LJ. & Divnić, Darko, 2016. "Photovoltaic solar plants in the Republic of Srpska - current state and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 546-560.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:14:p:5577-:d:382915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.