IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i12p5160-d375786.html
   My bibliography  Save this article

Study of Urban Greenery Models to Prevent Overheating of Parked Vehicles in P + R Facilities in Ljubljana, Slovenia

Author

Listed:
  • Alenka Fikfak

    (Faculty of Architecture, University of Ljubljana, Zoisova Street 12, 1000 Ljubljana, Slovenia)

  • Kristijan Lavtižar

    (Faculty of Architecture, University of Ljubljana, Zoisova Street 12, 1000 Ljubljana, Slovenia)

  • Janez Peter Grom

    (Faculty of Architecture, University of Ljubljana, Zoisova Street 12, 1000 Ljubljana, Slovenia)

  • Saja Kosanović

    (Department for Architecture, Faculty of Technical Sciences, University of Priština in Kosovska Mitrovica, Kneza Miloša Street 7, 38220 Kosovska Mitrovica, Serbia)

  • Martina Zbašnik-Senegačnik

    (Faculty of Architecture, University of Ljubljana, Zoisova Street 12, 1000 Ljubljana, Slovenia)

Abstract

Parking in park-and-ride (P + R) facilities on the outskirts of a city reduces the traffic inside the cities and follows the principles of sustainable mobility. However, large paved (asphalt) surfaces create urban heat islands (UHI). This causes the temperature to rise in vehicles during full-day parking, which has a negative effect on comfort level and driving performance. This study was conceptualized as two-stage research. The first (preliminary) stage dealt with the measurement and analysis of temperature data at two nearby open parking lots in the city of Ljubljana, one of which was the main research spatial area, P + R Barje (L1), and Trnovo parking (L2), which was used for comparison in the first-stage research. In the preliminary research, we underlined the problem of long-term parking in parking areas exposed to heatwaves (HW). The second stage involved the studying of greening schemes in P + R facilities, which would allow for optimal shading during parking. Advanced 3D and 4D models using ENVI-met and LEONARDO software were developed, which assessed the parking surfaces and the areas of optimum outdoor comfort. Shading by greenery was adopted in this paper, as the strategy aimed at improving the conditions by modelling different variants of greening the parking lot L1.

Suggested Citation

  • Alenka Fikfak & Kristijan Lavtižar & Janez Peter Grom & Saja Kosanović & Martina Zbašnik-Senegačnik, 2020. "Study of Urban Greenery Models to Prevent Overheating of Parked Vehicles in P + R Facilities in Ljubljana, Slovenia," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:5160-:d:375786
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/12/5160/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/12/5160/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Majid Amani-Beni & Biao Zhang & Gao-Di Xie & Yunting Shi, 2019. "Impacts of Urban Green Landscape Patterns on Land Surface Temperature: Evidence from the Adjacent Area of Olympic Forest Park of Beijing, China," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    2. Sadroddin Alavipanah & Martin Wegmann & Salman Qureshi & Qihao Weng & Thomas Koellner, 2015. "The Role of Vegetation in Mitigating Urban Land Surface Temperatures: A Case Study of Munich, Germany during the Warm Season," Sustainability, MDPI, vol. 7(4), pages 1-18, April.
    3. Chudong Huang & Xinyue Ye, 2015. "Spatial Modeling of Urban Vegetation and Land Surface Temperature: A Case Study of Beijing," Sustainability, MDPI, vol. 7(7), pages 1-27, July.
    4. Alenka Fikfak & Saja Kosanović & Miha Konjar & Janez P. Grom & Martina Zbašnik-Senegačnik, 2017. "The Impact of Morphological Features on Summer Temperature Variations on the Example of Two Residential Neighborhoods in Ljubljana, Slovenia," Sustainability, MDPI, vol. 9(1), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriele Battista & Luca Evangelisti & Claudia Guattari & Emanuele De Lieto Vollaro & Roberto De Lieto Vollaro & Francesco Asdrubali, 2020. "Urban Heat Island Mitigation Strategies: Experimental and Numerical Analysis of a University Campus in Rome (Italy)," Sustainability, MDPI, vol. 12(19), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jong-Hwa Park & Gi-Hyoug Cho, 2016. "Examining the Association between Physical Characteristics of Green Space and Land Surface Temperature: A Case Study of Ulsan, Korea," Sustainability, MDPI, vol. 8(8), pages 1-16, August.
    2. Giuseppina A. Giorgio & Maria Ragosta & Vito Telesca, 2017. "Climate Variability and Industrial-Suburban Heat Environment in a Mediterranean Area," Sustainability, MDPI, vol. 9(5), pages 1-10, May.
    3. Hong Jin & Peng Cui & Nyuk Hien Wong & Marcel Ignatius, 2018. "Assessing the Effects of Urban Morphology Parameters on Microclimate in Singapore to Control the Urban Heat Island Effect," Sustainability, MDPI, vol. 10(1), pages 1-18, January.
    4. Wojciech Bal & Magdalena Czałczyńska-Podolska & Adam Szymski, 2022. "The Tradition and Symbols of a Place in Shaping Public Spaces through the Example of the Transformation of Litewski Square in Lublin, Poland," Sustainability, MDPI, vol. 14(15), pages 1-26, July.
    5. Jeong-Hee Eum & Kwon Kim & Eung-Ho Jung & Paikho Rho, 2018. "Evaluation and Utilization of Thermal Environment Associated with Policy: A Case Study of Daegu Metropolitan City in South Korea," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    6. Liukuan Zhang & Xiaoxiao Shi & Qing Chang, 2022. "Exploring Adaptive UHI Mitigation Solutions by Spatial Heterogeneity of Land Surface Temperature and Its Relationship to Urban Morphology in Historical Downtown Blocks, Beijing," Land, MDPI, vol. 11(4), pages 1-24, April.
    7. Meng Huang & Peng Cui & Xin He, 2018. "Study of the Cooling Effects of Urban Green Space in Harbin in Terms of Reducing the Heat Island Effect," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    8. Abdul Naser Majidi & Zoran Vojinovic & Alida Alves & Sutat Weesakul & Arlex Sanchez & Floris Boogaard & Jeroen Kluck, 2019. "Planning Nature-Based Solutions for Urban Flood Reduction and Thermal Comfort Enhancement," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    9. Stefania Bonafoni & Giorgio Baldinelli & Paolo Verducci & Andrea Presciutti, 2017. "Remote Sensing Techniques for Urban Heating Analysis: A Case Study of Sustainable Construction at District Level," Sustainability, MDPI, vol. 9(8), pages 1-12, July.
    10. Han Xiao & Monika Kopecká & Shan Guo & Yanning Guan & Danlu Cai & Chunyan Zhang & Xiaoxin Zhang & Wutao Yao, 2018. "Responses of Urban Land Surface Temperature on Land Cover: A Comparative Study of Vienna and Madrid," Sustainability, MDPI, vol. 10(2), pages 1-19, January.
    11. Younha Kim & Seung Man An & Jeong-Hee Eum & Jung-Hun Woo, 2016. "Analysis of Thermal Environment over a Small-Scale Landscape in a Densely Built-Up Asian Megacity," Sustainability, MDPI, vol. 8(4), pages 1-17, April.
    12. Jinghui Li & Wei Fang & Tao Wang & Salman Qureshi & Juha M. Alatalo & Yang Bai, 2017. "Correlations between Socioeconomic Drivers and Indicators of Urban Expansion: Evidence from the Heavily Urbanised Shanghai Metropolitan Area, China," Sustainability, MDPI, vol. 9(7), pages 1-13, July.
    13. Mirza Waleed & Muhammad Sajjad & Anthony Owusu Acheampong & Md. Tauhidul Alam, 2023. "Towards Sustainable and Livable Cities: Leveraging Remote Sensing, Machine Learning, and Geo-Information Modelling to Explore and Predict Thermal Field Variance in Response to Urban Growth," Sustainability, MDPI, vol. 15(2), pages 1-27, January.
    14. Nana Guo & Xinbin Liang & Lingran Meng, 2022. "Evaluation of the Thermal Environmental Effects of Urban Ecological Networks—A Case Study of Xuzhou City, China," Sustainability, MDPI, vol. 14(13), pages 1-24, June.
    15. Yaoping Cui & Xinliang Xu & Jinwei Dong & Yaochen Qin, 2016. "Influence of Urbanization Factors on Surface Urban Heat Island Intensity: A Comparison of Countries at Different Developmental Phases," Sustainability, MDPI, vol. 8(8), pages 1-14, July.
    16. Fei He & Luyun Liu & Yu Huang & Komi Bernard Bedra & Minhuan Zhang, 2023. "Investigating the Spatial Heterogeneity of Urban Heat Island Responses to Climate Change Based on Local Climate Zones," Sustainability, MDPI, vol. 15(7), pages 1-19, April.
    17. Mohammad Mansourmoghaddam & Negar Naghipur & Iman Rousta & Seyed Kazem Alavipanah & Haraldur Olafsson & Ashehad A. Ali, 2023. "Quantifying the Effects of Green-Town Development on Land Surface Temperatures (LST) (A Case Study at Karizland (Karizboom), Yazd, Iran)," Land, MDPI, vol. 12(4), pages 1-19, April.
    18. Musammat Shahinara Begum & Sujit Kumar Bala & A.K.M. Saiful Islam & Debjit Roy, 2021. "Environmental and Social Dynamics of Urban Rooftop Agriculture (URTA) and Their Impacts on Microclimate Change," Sustainability, MDPI, vol. 13(16), pages 1-26, August.
    19. Hyungkyoo Kim & Seung-Nam Kim, 2017. "The Seasonal and Diurnal Influence of Surrounding Land Use on Temperature: Findings from Seoul, South Korea," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
    20. Meizi You & Riwen Lai & Jiayuan Lin & Zhesheng Zhu, 2021. "Quantitative Analysis of a Spatial Distribution and Driving Factors of the Urban Heat Island Effect: A Case Study of Fuzhou Central Area, China," IJERPH, MDPI, vol. 18(24), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:5160-:d:375786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.