IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i11p4795-d370333.html
   My bibliography  Save this article

Successional Variation in the Soil Microbial Community in Odaesan National Park, Korea

Author

Listed:
  • Hanbyul Lee

    (Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea)

  • Seung-Yoon Oh

    (Department of Biology and Chemistry, Changwon National University, Changwon 51140, Korea)

  • Young Min Lee

    (Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea)

  • Yeongseon Jang

    (Division of Special Forest Production, National Institute of Forest Science, Seoul 02455, Korea)

  • Seokyoon Jang

    (Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea)

  • Changmu Kim

    (Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Korea)

  • Young Woon Lim

    (School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Korea)

  • Jae-Jin Kim

    (Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea)

Abstract

Succession is defined as variation in ecological communities caused by environmental changes. Environmental succession can be caused by rapid environmental changes, but in many cases, it is slowly caused by climate change or constant low-intensity disturbances. Odaesan National Park is a well-preserved forest located in the Taebaek mountain range in South Korea. The forest in this national park is progressing from a mixed-wood forest to a broad-leaved forest. In this study, microbial community composition was investigated using 454 sequencing of soil samples collected from 13 different locations in Odaesan National Park. We assessed whether microbial communities are affected by changes in environmental factors such as water content (WC), nutrient availability (total carbon (TC) and total nitrogen (TN)) and pH caused by forest succession. WC, TC, TN and pH significantly differed between the successional stages of the forest. The WC, TC and TN of the forest soils tended to increase as succession progressed, while pH tended to decrease. In both successional stages, the bacterial genus Pseudolabrys was the most abundant, followed by Afipia and Bradyrhizobium . In addition, the fungal genus Saitozyma showed the highest abundance in the forest soils. Microbial community composition changed according to forest successional stage and soil properties (WC, TC, TN, and pH). Furthermore, network analysis of both bacterial and fungal taxa revealed strong relationships of the microbial community depending on the soil properties affected by forest succession.

Suggested Citation

  • Hanbyul Lee & Seung-Yoon Oh & Young Min Lee & Yeongseon Jang & Seokyoon Jang & Changmu Kim & Young Woon Lim & Jae-Jin Kim, 2020. "Successional Variation in the Soil Microbial Community in Odaesan National Park, Korea," Sustainability, MDPI, vol. 12(11), pages 1-13, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4795-:d:370333
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/11/4795/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/11/4795/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. E. A. G. Schuur & A. D. McGuire & C. Schädel & G. Grosse & J. W. Harden & D. J. Hayes & G. Hugelius & C. D. Koven & P. Kuhry & D. M. Lawrence & S. M. Natali & D. Olefeldt & V. E. Romanovsky & K. Schae, 2015. "Climate change and the permafrost carbon feedback," Nature, Nature, vol. 520(7546), pages 171-179, April.
    2. Avanthi Deshani Igalavithana & Sang Soo Lee & Nabeel Khan Niazi & Young-Han Lee & Kye Hoon Kim & Jeong-Hun Park & Deok Hyun Moon & Yong Sik Ok, 2017. "Assessment of Soil Health in Urban Agriculture: Soil Enzymes and Microbial Properties," Sustainability, MDPI, vol. 9(2), pages 1-14, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Young-Mok Heo & Hanbyul Lee & Sun-Lul Kwon & Yeonjae Yoo & Dongjun Kim & Sang-Il Han & Aslan-Hwanhwi Lee & Changmu Kim & Gyu-Hyeok Kim & Jae-Jin Kim, 2020. "Influence of Tree Vegetation on Soil Microbial Communities in Temperate Forests and Their Potential as a Proactive Indicator of Vegetation Shift Due to Climate Change," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    2. Taimoor Hassan Farooq & Uttam Kumar & Awais Shakoor & Gadah Albasher & Saad Alkahtani & Humaira Rizwana & Muhammad Tayyab & Jalpa Dobaria & Muhammad Iftikhar Hussain & Pengfei Wu, 2021. "Influence of Intraspecific Competition Stress on Soil Fungal Diversity and Composition in Relation to Tree Growth and Soil Fertility in Sub-Tropical Soils under Chinese Fir Monoculture," Sustainability, MDPI, vol. 13(19), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinting Guo & Yuanman Hu & Zaiping Xiong & Xiaolu Yan & Chunlin Li & Rencang Bu, 2017. "Variations in Growing-Season NDVI and Its Response to Permafrost Degradation in Northeast China," Sustainability, MDPI, vol. 9(4), pages 1-15, April.
    2. Xiangwen Wu & Shuying Zang & Dalong Ma & Jianhua Ren & Qiang Chen & Xingfeng Dong, 2019. "Emissions of CO 2 , CH 4 , and N 2 O Fluxes from Forest Soil in Permafrost Region of Daxing’an Mountains, Northeast China," IJERPH, MDPI, vol. 16(16), pages 1-14, August.
    3. Brock, W. & Xepapadeas, A., 2017. "Climate change policy under polar amplification," European Economic Review, Elsevier, vol. 99(C), pages 93-112.
    4. Dmitry Orlov & Marija Menshakova & Tomas Thierfelder & Yulia Zaika & Sepp Böhme & Birgitta Evengard & Natalia Pshenichnaya, 2020. "Healthy Ecosystems Are a Prerequisite for Human Health—A Call for Action in the Era of Climate Change with a Focus on Russia," IJERPH, MDPI, vol. 17(22), pages 1-11, November.
    5. Louise Kessler, 2015. "Estimating the economic impact of the permafrost carbon feedback," GRI Working Papers 219, Grantham Research Institute on Climate Change and the Environment.
    6. Zhichao Xu & Wei Shan & Ying Guo & Chengcheng Zhang & Lisha Qiu, 2022. "Swamp Wetlands in Degraded Permafrost Areas Release Large Amounts of Methane and May Promote Wildfires through Friction Electrification," Sustainability, MDPI, vol. 14(15), pages 1-28, July.
    7. Xiaoni You & Xiangying Li & Mika Sillanpää & Rong Wang & Chengyong Wu & Qiangqiang Xu, 2022. "Export of Dissolved Organic Carbon from the Source Region of Yangtze River in the Tibetan Plateau," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    8. Nontobeko Gloria Maphuhla & Francis Bayo Lewu & Opeoluwa Oyehan Oyedeji, 2020. "The Effects of Physicochemical Parameters on Analysed Soil Enzyme Activity from Alice Landfill Site," IJERPH, MDPI, vol. 18(1), pages 1-15, December.
    9. Roman Desyatkin & Matrena Okoneshnikova & Alexandra Ivanova & Maya Nikolaeva & Nikolay Filippov & Alexey Desyatkin, 2022. "Dynamics of Vegetation and Soil Cover of Pyrogenically Disturbed Areas of the Northern Taiga under Conditions of Thermokarst Development and Climate Warming," Land, MDPI, vol. 11(9), pages 1-21, September.
    10. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    11. Andrei G. Shepelev & Alexander Kizyakov & Sebastian Wetterich & Alexandra Cherepanova & Alexander Fedorov & Igor Syromyatnikov & Grigoriy Savvinov, 2020. "Sub-Surface Carbon Stocks in Northern Taiga Landscapes Exposed in the Batagay Megaslump, Yana Upland, Yakutia," Land, MDPI, vol. 9(9), pages 1-16, August.
    12. Dandan Song & Yuanquan Cui & Dalong Ma & Xin Li & Lin Liu, 2022. "Spatial Variation of Microbial Community Structure and Its Driving Environmental Factors in Two Forest Types in Permafrost Region of Greater Xing′an Mountains," Sustainability, MDPI, vol. 14(15), pages 1-15, July.
    13. Tian, Guangli & Qiu, Husen & Wang, Yuting & Zhou, Xinguo & Li, Dongwei, 2022. "Short-term legacy effects of rice season irrigation and fertilization on the soil bacterial community of the subsequent wheat season in a rice-wheat rotation system," Agricultural Water Management, Elsevier, vol. 263(C).
    14. Yiming Wang & Pengcheng Xiang, 2018. "Urban Sprawl Sustainability of Mountainous Cities in the Context of Climate Change Adaptability Using a Coupled Coordination Model: A Case Study of Chongqing, China," Sustainability, MDPI, vol. 11(1), pages 1-20, December.
    15. Junjie Ma & Ren Li & Tonghua Wu & Hongchao Liu & Xiaodong Wu & Guojie Hu & Wenhao Liu & Shenning Wang & Yao Xiao & Shengfeng Tang & Jianzong Shi & Yongping Qiao, 2024. "Dynamics of the Interaction between Freeze–Thaw Process and Surface Energy Budget on the Permafrost Region of the Qinghai-Tibet Plateau," Land, MDPI, vol. 13(10), pages 1-15, October.
    16. Jan Åge Riseth & Hans Tømmervik & Morten Tryland, 2020. "Spreading or Gathering? Can Traditional Knowledge Be a Resource to Tackle Reindeer Diseases Associated with Climate Change?," IJERPH, MDPI, vol. 17(16), pages 1-19, August.
    17. Rickels, Wilfried & Merk, Christine & Honneth, Johannes & Schwinger, Jörg & Quaas, Martin F. & Oschlies, Andreas, 2019. "Welche Rolle spielen negative Emissionen für die zukünftige Klimapolitik? Eine ökonomische Einschätzung des 1,5°C-Sonderberichts des Weltklimarats," Kiel Working Papers 2116, Kiel Institute for the World Economy (IfW Kiel).
    18. Fouad El Ouardighi & Eugene Khmelnitsky & Marc Leandri, 2020. "Production-based pollution versus deforestation: optimal policy with state-independent and-dependent environmental absorption efficiency restoration process," Annals of Operations Research, Springer, vol. 292(1), pages 1-26, September.
    19. Jianjian He & Pengyan Zhang & Wenlong Jing & Yuhang Yan, 2018. "Spatial Responses of Net Ecosystem Productivity of the Yellow River Basin under Diurnal Asymmetric Warming," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    20. Wang, Guofeng & Deng, Xiangzheng & Wang, Jingyu & Zhang, Fan & Liang, Shiqi, 2019. "Carbon emission efficiency in China: A spatial panel data analysis," China Economic Review, Elsevier, vol. 56(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:11:p:4795-:d:370333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.