IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i10p3946-d356827.html
   My bibliography  Save this article

The Sustainability Performance of Reinforced Concrete Structures in Tunnel Lining Induced by Long-Term Coastal Environment

Author

Listed:
  • Zhiqiang Zhang

    (School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
    Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China)

  • Ruikai Gong

    (School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
    Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China)

  • Heng Zhang

    (School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
    Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China)

  • Wanping He

    (School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China)

Abstract

At present, the damage caused by steel corrosion to structures has become a serious problem all over the world. In order to study the mechanical behaviors of tunnel lining structure system under the corrosive environment to rebars, first, the bending tests were performed to investigate the crack propagation behavior and structural bearing capacity of the reinforced concrete bending members degraded by corrosion. Secondly, the pull-out tests were performed to investigate the degradation of bonding strength between corroded rebars and the concrete. Finally, on the basis of the findings from the pull-out tests, a 3-D finite element bond-slip model of reinforced concrete lining structure has been established to simulate the changes of bearing capacity and durability of tunnel reinforced concrete lining under different corrosion degrees. The research has revealed: Rebar corrosion is the most important factor affecting concrete and steel corrosion. As the conversion rust rate increases, the ultimate drawing force continues to decrease. With the increase of the corrosion rate, the deflection of the specimen when it is destroyed becomes smaller, the cracking load becomes smaller and the bearing capacity also decreases. As the degree of corrosion increases, the overall deformation of the tunnel increases, and the overall safety of the lining structure decreases. The corner position is the most prone to problems after the lining structure is corroded, so pay more attention. As well, the safety of the lining structure will be basically lost when the final corrosion rate of the steel bars is greater than 30%. The findings of this research can be used to evaluate the corrosion degree of tunnel reinforced concrete lining structure and support the durability design of new tunnel concrete lining structure.

Suggested Citation

  • Zhiqiang Zhang & Ruikai Gong & Heng Zhang & Wanping He, 2020. "The Sustainability Performance of Reinforced Concrete Structures in Tunnel Lining Induced by Long-Term Coastal Environment," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:3946-:d:356827
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/10/3946/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/10/3946/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heng Zhang & Liang Chen & Shougen Chen & Jianchun Sun & Jiasong Yang, 2018. "The Spatiotemporal Distribution Law of Microseismic Events and Rockburst Characteristics of the Deeply Buried Tunnel Group," Energies, MDPI, vol. 11(12), pages 1-21, November.
    2. Zhiqiang Zhang & Chun Luo & Heng Zhang & Ruikai Gong, 2020. "Rockburst Identification Method Based on Energy Storage Limit of Surrounding Rock," Energies, MDPI, vol. 13(2), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laixiu Cheng & Liang Shi & Ling Yi & Weizhuo Zhao, 2022. "Study on Mechanical Properties and Constitutive Relationship of Concrete Corroded by Hydrochloric Acid under Cyclic Load," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    2. Feng Lu & Yi Wang & Junfu Fu & Yanxing Yang & Wenge Qiu & Yawen Jing & Manlin Jiang & Huayun Li, 2023. "Safety Evaluation of Plain Concrete Lining Considering Deterioration and Aerodynamic Effects," Sustainability, MDPI, vol. 15(9), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanna Michalak & Paweł Przybysz, 2021. "The Use of 3D Numerical Modeling in Conceptual Design: A Case Study," Energies, MDPI, vol. 14(16), pages 1-21, August.
    2. Lei Li & Yujiang Xie & Jingqiang Tan, 2020. "Application of Waveform Stacking Methods for Seismic Location at Multiple Scales," Energies, MDPI, vol. 13(18), pages 1-15, September.
    3. Zhiqiang Zhang & Peng Xu & Heng Zhang & Kangjian Zhang, 2019. "Dynamic Change Characteristics of Groundwater Affected by Super-Long Tunnel Construction in the Western Mountainous Area of China," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    4. Zhiqiang Zhang & Chun Luo & Heng Zhang & Ruikai Gong, 2020. "Rockburst Identification Method Based on Energy Storage Limit of Surrounding Rock," Energies, MDPI, vol. 13(2), pages 1-24, January.
    5. Xuewei Liu & Quansheng Liu & Bin Liu & Yongshui Kang, 2020. "A Modified Bursting Energy Index for Evaluating Coal Burst Proneness and Its Application in Ordos Coalfield, China," Energies, MDPI, vol. 13(7), pages 1-19, April.
    6. Guangliang Feng & Guoqing Xia & Bingrui Chen & Yaxun Xiao & Ruichen Zhou, 2019. "A Method for Rockburst Prediction in the Deep Tunnels of Hydropower Stations Based on the Monitored Microseismicity and an Optimized Probabilistic Neural Network Model," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    7. Jiewen Pang & Xiaojie Yang & Shaoqiang Yang & Yongliang He & Jianlin Xie & Qiaoyun Han, 2023. "A Method for Dividing Rockburst Risk Zones—A Case Study of the Hegang Mining Area in China," Sustainability, MDPI, vol. 15(20), pages 1-18, October.
    8. Hang Zhang & Chunchi Ma & Tianbin Li, 2019. "Quantitative Evaluation of the “Non-Enclosed” Microseismic Array: A Case Study in a Deeply Buried Twin-Tube Tunnel," Energies, MDPI, vol. 12(10), pages 1-17, May.
    9. Guangliang Feng & Manqing Lin & Yang Yu & Yu Fu, 2020. "A Microseismicity-Based Method of Rockburst Intensity Warning in Deep Tunnels in the Initial Period of Microseismic Monitoring," Energies, MDPI, vol. 13(11), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:10:p:3946-:d:356827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.