IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i8p2329-d223933.html
   My bibliography  Save this article

Dynamic Change Characteristics of Groundwater Affected by Super-Long Tunnel Construction in the Western Mountainous Area of China

Author

Listed:
  • Zhiqiang Zhang

    (School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
    Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China)

  • Peng Xu

    (School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
    Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China)

  • Heng Zhang

    (School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
    Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China)

  • Kangjian Zhang

    (School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China)

Abstract

The problem of groundwater is very prominent in super-long tunnel construction, which brings serious potential safety hazards and economic losses to the project. The knowledge of dynamic change characteristics of groundwater and prediction of water inflow is the key to ensure rational design and safe construction in super-long tunnel. In this paper, numerical simulation and in situ observation are conducted to investigate dynamic change characteristics of groundwater and the prediction of water inflow based on the Daxiangling tunnel in Sichuan Province of China. The results show that the numerical model established with detailed geological data and validated with field monitoring data can effectively analyze dynamic change characteristics of groundwater, as well as predict water inflow. The initial state of groundwater is steady when the tunnel is unexcavated. Tunnel excavation has a significant influence on the distribution of groundwater. The flow direction of groundwater will change, and the contour lines of groundwater will be intensive at the tunnel face. These changes will be more obvious and dramatic when the tunnel is excavated into the fault zone, which is a signal that the water inrush is more likely to occur in the fault zone because of a lot of joints and fractures. A connected linear cavity is formed with tunnel holing-through and groundwater begins to flow vertically downwards to the tunnel. As far as the prediction of water inflow is concerned, the numerical method can more precisely calculate the value of water inflow with less than 15 percent relative error compared with the groundwater dynamics method.

Suggested Citation

  • Zhiqiang Zhang & Peng Xu & Heng Zhang & Kangjian Zhang, 2019. "Dynamic Change Characteristics of Groundwater Affected by Super-Long Tunnel Construction in the Western Mountainous Area of China," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2329-:d:223933
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/8/2329/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/8/2329/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heng Zhang & Liang Chen & Shougen Chen & Jianchun Sun & Jiasong Yang, 2018. "The Spatiotemporal Distribution Law of Microseismic Events and Rockburst Characteristics of the Deeply Buried Tunnel Group," Energies, MDPI, vol. 11(12), pages 1-21, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Li & Yujiang Xie & Jingqiang Tan, 2020. "Application of Waveform Stacking Methods for Seismic Location at Multiple Scales," Energies, MDPI, vol. 13(18), pages 1-15, September.
    2. Zhiqiang Zhang & Chun Luo & Heng Zhang & Ruikai Gong, 2020. "Rockburst Identification Method Based on Energy Storage Limit of Surrounding Rock," Energies, MDPI, vol. 13(2), pages 1-24, January.
    3. Xuewei Liu & Quansheng Liu & Bin Liu & Yongshui Kang, 2020. "A Modified Bursting Energy Index for Evaluating Coal Burst Proneness and Its Application in Ordos Coalfield, China," Energies, MDPI, vol. 13(7), pages 1-19, April.
    4. Guangliang Feng & Guoqing Xia & Bingrui Chen & Yaxun Xiao & Ruichen Zhou, 2019. "A Method for Rockburst Prediction in the Deep Tunnels of Hydropower Stations Based on the Monitored Microseismicity and an Optimized Probabilistic Neural Network Model," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    5. Hanna Michalak & Paweł Przybysz, 2021. "The Use of 3D Numerical Modeling in Conceptual Design: A Case Study," Energies, MDPI, vol. 14(16), pages 1-21, August.
    6. Hang Zhang & Chunchi Ma & Tianbin Li, 2019. "Quantitative Evaluation of the “Non-Enclosed” Microseismic Array: A Case Study in a Deeply Buried Twin-Tube Tunnel," Energies, MDPI, vol. 12(10), pages 1-17, May.
    7. Zhiqiang Zhang & Ruikai Gong & Heng Zhang & Wanping He, 2020. "The Sustainability Performance of Reinforced Concrete Structures in Tunnel Lining Induced by Long-Term Coastal Environment," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    8. Guangliang Feng & Manqing Lin & Yang Yu & Yu Fu, 2020. "A Microseismicity-Based Method of Rockburst Intensity Warning in Deep Tunnels in the Initial Period of Microseismic Monitoring," Energies, MDPI, vol. 13(11), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2329-:d:223933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.