IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2019i1p112-d300813.html
   My bibliography  Save this article

Trend Analysis of Urban Heat Island Intensity According to Urban Area Change in Asian Mega Cities

Author

Listed:
  • Kyungil Lee

    (Division of Environmental Science & Ecological Engineering, Korea University, 02841 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea)

  • Yoonji Kim

    (Division of Environmental Science & Ecological Engineering, Korea University, 02841 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea)

  • Hyun Chan Sung

    (Division of Environmental Science & Ecological Engineering, Korea University, 02841 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea)

  • Jieun Ryu

    (Division of Environmental Science & Ecological Engineering, Korea University, 02841 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea)

  • Seong Woo Jeon

    (Division of Environmental Science & Ecological Engineering, Korea University, 02841 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea)

Abstract

Urban heat island (UHI) is a phenomenon that occurs in cities worldwide. Therefore, there is an increasing need for studies on the changes in UHI intensity and long-term trends based on macroscopic characteristics related to urbanization. In this study, changes in seasonal UHI intensity based on urban area were analyzed for eight Asian mega cities from 1992–2012. The results indicate that the change in pattern of UHI intensity varies for different cities and seasons. UHI intensity increased as the urban area size increased. Furthermore, the dependency of UHI intensity on the economic situation was also demonstrated. With respect to the seasons, significantly increasing trends appeared during the summer. Moreover, depending on urban characteristics such as geography and climate, increasing trends appeared during other seasons. Population was also found to affect UHI intensity by generating anthropogenic heat; however, its effect as an individual factor appeared to be insignificant. This is a macroscale study that analyzes the effect of urban area size on UHI intensity. Future studies on urbanization factors and levels influencing the UHI intensity using higher resolution materials are required

Suggested Citation

  • Kyungil Lee & Yoonji Kim & Hyun Chan Sung & Jieun Ryu & Seong Woo Jeon, 2019. "Trend Analysis of Urban Heat Island Intensity According to Urban Area Change in Asian Mega Cities," Sustainability, MDPI, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:112-:d:300813
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/1/112/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/1/112/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Santamouris, M., 2013. "Using cool pavements as a mitigation strategy to fight urban heat island—A review of the actual developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 224-240.
    2. Sigurdson , Jon & Palonka, Krystyna, 2008. "Innovative City In West China Chongqing," EIJS Working Paper Series 239, Stockholm School of Economics, The European Institute of Japanese Studies.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmad Fallatah & Ayman Imam, 2023. "Detecting Land Surface Temperature Variations Using Earth Observation at the Holy Sites in Makkah, Saudi Arabia," Sustainability, MDPI, vol. 15(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jamshidi, Ali & Kurumisawa, Kiyofumi & Nawa, Toyoharu & Igarashi, Toshifumi, 2016. "Performance of pavements incorporating waste glass: The current state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 211-236.
    2. Ning Li & Yuxiang Tian & Biao Ma & Dongxia Hu, 2022. "Experimental Investigation of Water-Retaining and Mechanical Behaviors of Unbound Granular Materials under Infiltration," Sustainability, MDPI, vol. 14(3), pages 1-17, January.
    3. Qin, Yinghong, 2015. "A review on the development of cool pavements to mitigate urban heat island effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 445-459.
    4. Bonggeun Song & Kyunghun Park, 2019. "Analysis of Spatiotemporal Urban Temperature Characteristics by Urban Spatial Patterns in Changwon City, South Korea," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
    5. Taleghani, Mohammad, 2018. "Outdoor thermal comfort by different heat mitigation strategies- A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2011-2018.
    6. Renato Soares & Helena Corvacho & Fernando Alves, 2021. "Summer Thermal Conditions in Outdoor Public Spaces: A Case Study in a Mediterranean Climate," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    7. SangHyeok Lee & Donghyun Kim, 2022. "Multidisciplinary Understanding of the Urban Heating Problem and Mitigation: A Conceptual Framework for Urban Planning," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    8. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. Karol Bandurski & Hanna Bandurska & Ewa Kazimierczak-Grygiel & Halina Koczyk, 2020. "The Green Structure for Outdoor Places in Dry, Hot Regions and Seasons—Providing Human Thermal Comfort in Sustainable Cities," Energies, MDPI, vol. 13(11), pages 1-24, June.
    10. Ulpiani, Giulia, 2019. "Water mist spray for outdoor cooling: A systematic review of technologies, methods and impacts," Applied Energy, Elsevier, vol. 254(C).
    11. Salim Ferwati & Cynthia Skelhorn & Vivek Shandas & Yasuyo Makido, 2019. "A Comparison of Neighborhood-Scale Interventions to Alleviate Urban Heat in Doha, Qatar," Sustainability, MDPI, vol. 11(3), pages 1-20, January.
    12. Maria Makropoulou, 2017. "Microclimate Improvement of Inner-City Urban Areas in a Mediterranean Coastal City," Sustainability, MDPI, vol. 9(6), pages 1-29, May.
    13. Martina Giorio & Rossana Paparella, 2023. "Climate Mitigation Strategies: The Use of Cool Pavements," Sustainability, MDPI, vol. 15(9), pages 1-26, May.
    14. Nikolaos Sylliris & Apostolos Papagiannakis & Aristotelis Vartholomaios, 2023. "Improving the Climate Resilience of Urban Road Networks: A Simulation of Microclimate and Air Quality Interventions in a Typology of Streets in Thessaloniki Historic Centre," Land, MDPI, vol. 12(2), pages 1-24, February.
    15. Castaldo, Veronica Lucia & Pisello, Anna Laura & Piselli, Cristina & Fabiani, Claudia & Cotana, Franco & Santamouris, Mattheos, 2018. "How outdoor microclimate mitigation affects building thermal-energy performance: A new design-stage method for energy saving in residential near-zero energy settlements in Italy," Renewable Energy, Elsevier, vol. 127(C), pages 920-935.
    16. Marzie Naserikia & Elyas Asadi Shamsabadi & Mojtaba Rafieian & Walter Leal Filho, 2019. "The Urban Heat Island in an Urban Context: A Case Study of Mashhad, Iran," IJERPH, MDPI, vol. 16(3), pages 1-21, January.
    17. Shi Yin & Werner Lang & Yiqiang Xiao & Zhao Xu, 2019. "Correlative Impact of Shading Strategies and Configurations Design on Pedestrian-Level Thermal Comfort in Traditional Shophouse Neighbourhoods, Southern China," Sustainability, MDPI, vol. 11(5), pages 1-26, March.
    18. Ghalandari, Taher & Hasheminejad, Navid & Van den bergh, Wim & Vuye, Cedric, 2021. "A critical review on large-scale research prototypes and actual projects of hydronic asphalt pavement systems," Renewable Energy, Elsevier, vol. 177(C), pages 1421-1437.
    19. Sofia Costanzini & Chiara Ferrari & Francesca Despini & Alberto Muscio, 2021. "Standard Test Methods for Rating of Solar Reflectance of Built-Up Surfaces and Potential Use of Satellite Remote Sensors," Energies, MDPI, vol. 14(20), pages 1-24, October.
    20. Sophia Kappou & Manolis Souliotis & Spiros Papaefthimiou & Giorgos Panaras & John A. Paravantis & Evanthie Michalena & Jeremy Maxwell Hills & Andreas P. Vouros & Aikaterini Ntymenou & Giouli Mihalakak, 2022. "Cool Pavements: State of the Art and New Technologies," Sustainability, MDPI, vol. 14(9), pages 1-32, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2019:i:1:p:112-:d:300813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.