IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i9p2644-d229385.html
   My bibliography  Save this article

Evaluating the Effects of Human Activity over the Last Decades on the Soil Organic Carbon Pool Using Satellite Imagery and GIS Techniques in the Nile Delta Area, Egypt

Author

Listed:
  • Elsayed Said Mohamed

    (National Authority for Remote Sensing and Space Sciences (NARSS), Cairo 1564, Egypt)

  • Mohamed Abu-hashim

    (Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt)

  • Mohamed A. E. AbdelRahman

    (National Authority for Remote Sensing and Space Sciences (NARSS), Cairo 1564, Egypt)

  • Brigitta Schütt

    (Institute of Geographic Sciences, 12249 Berlin, Germany)

  • Rosa Lasaponara

    (Italian National Research Council, C.da Santa Loja, Tito Scalo, 85050 Potenza, Italy)

Abstract

The study aims to clarify the relationship between soil organic carbon (SOC) and human activity under arid conditions, in the east area of the Nile Delta, Egypt. SOC is one of the critical factors in food production and plays an important role in the climate change because it affects the physio-chemical soil characteristics, plant growth, and contributes to sustainable development on global levels. For the purpose of our investigations, 120 soil samples (0–30 cm) were collected throughout different land uses and soil types of the study area. Multiple linear regressions (MLR) were used to investigate the spatiotemporal relationship of SOC, soil characteristics, and environmental factors. Remote sensing data acquired from Landsat 5 TM in July 1995 and operational land imager (OLI) in July 2018 were used to model SOC pool. The results revealed significant variations of soil organic carbon pool (SOCP) among different soil textures and land-uses. Soil with high clay content revealed an increase in the percentage of soil organic carbon, and had mean SOCP of 6.08 ± 1.91 Mg C ha −1 , followed by clay loams and loamy soils. The higher values of SOCP were observed in the northern regions of the study area. The phenomenon is associated with the expansion of the human activity of initiating fish ponds that reflected higher values of SOC that were related to the organic additions used as nutrients for fish. Nevertheless, the SOC values decreased in southeast of the study area with the decrease of soil moisture contents and the increase in the heavy texture profiles. As a whole, our findings pointed out that the human factor has had a significant impact on the variation of soil organic carbon values in the Eastern Nile Delta from 1995 to 2018. As land use changes from agricultural activity to fish ponds, the SOCP significantly increased. The agriculture land-use revealed higher SOCP with 60.77 Mg C ha −1 in clay soils followed by fish ponds with 53.43 Mg C ha −1 . The results also showed a decrease in SOCP values due to an increasing in land surface temperature (LST) thus highlighting that influence of temperature and ambient soil conditions linked to land-use changes have a marked impact on surface SOCP and C sequestration.

Suggested Citation

  • Elsayed Said Mohamed & Mohamed Abu-hashim & Mohamed A. E. AbdelRahman & Brigitta Schütt & Rosa Lasaponara, 2019. "Evaluating the Effects of Human Activity over the Last Decades on the Soil Organic Carbon Pool Using Satellite Imagery and GIS Techniques in the Nile Delta Area, Egypt," Sustainability, MDPI, vol. 11(9), pages 1-16, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:9:p:2644-:d:229385
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/9/2644/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/9/2644/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barry Smit & Mark Skinner, 2002. "Adaptation options in agriculture to climate change: a typology," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(1), pages 85-114, March.
    2. Jason C. Neff & Alan R. Townsend & Gerd Gleixner & Scott J. Lehman & Jocelyn Turnbull & William D. Bowman, 2002. "Variable effects of nitrogen additions on the stability and turnover of soil carbon," Nature, Nature, vol. 419(6910), pages 915-917, October.
    3. Rosa Lasaponara & Beniamino Murgante & Abdelaziz Elfadaly & Mohamad Molaei Qelichi & Saeed Zanganeh Shahraki & Osama Wafa & Wael Attia, 2017. "Spatial Open Data for Monitoring Risks and Preserving Archaeological Areas and Landscape: Case Studies at Kom el Shoqafa, Egypt and Shush, Iran," Sustainability, MDPI, vol. 9(4), pages 1-25, April.
    4. Kelsee Bratley & Eman Ghoneim, 2018. "Modeling Urban Encroachment on the Agricultural Land of the Eastern Nile Delta Using Remote Sensing and a GIS-Based Markov Chain Model," Land, MDPI, vol. 7(4), pages 1-21, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manal Alnaimy & Martina Zelenakova & Zuzana Vranayova & Mohamed Abu-Hashim, 2020. "Effects of Temporal Variation in Long-Term Cultivation on Organic Carbon Sequestration in Calcareous Soils: Nile Delta, Egypt," Sustainability, MDPI, vol. 12(11), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seydou Zakari & Germaine Ibro & Bokar Moussa & Tahirou Abdoulaye, 2022. "Adaptation Strategies to Climate Change and Impacts on Household Income and Food Security: Evidence from Sahelian Region of Niger," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    2. Cameira, Maria do Rosário & Rodrigo, Isabel & Garção, Andreia & Neves, Manuela & Ferreira, Antónia & Paredes, Paula, 2024. "Linking participatory approach and rapid appraisal methods to select potential innovations in collective irrigation systems," Agricultural Water Management, Elsevier, vol. 299(C).
    3. Jeetendra Prakash Aryal & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri & Dil Bahadur Rahut & M. L. Jat, 2020. "Climate change and agriculture in South Asia: adaptation options in smallholder production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5045-5075, August.
    4. Wan-Jiun Chen & Jihn-Fa Jan & Chih-Hsin Chung & Shyue-Cherng Liaw, 2023. "Agriculture Risks and Opportunities in a Climate-Vulnerable Watershed in Northeastern Taiwan—The Opinions of Leisure Agriculture Operators," Sustainability, MDPI, vol. 15(20), pages 1-22, October.
    5. Benjamin Bathfield & Pierre Gasselin & Rémy Vandame & Santiago López-Ridaura & Luís García Barrios, 2010. "Adaptation de la gestion technique des producteurs de café et de miel face aux variations de prix au Guatemala : concepts et méthodes," Post-Print hal-00783500, HAL.
    6. Nomfundo Sibiya & Mikateko Sithole & Lindelani Mudau & Mulala Danny Simatele, 2022. "Empowering the Voiceless: Securing the Participation of Marginalised Groups in Climate Change Governance in South Africa," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    7. Jackson, T.M. & Hanjra, Munir A. & Khan, S. & Hafeez, M.M., 2011. "Building a climate resilient farm: A risk based approach for understanding water, energy and emissions in irrigated agriculture," Agricultural Systems, Elsevier, vol. 104(9), pages 729-745.
    8. Fei Liu & Huaruo Chen & Jie Xu & Ya Wen & Tingting Fang, 2021. "Exploring the Relationships between Resilience and Turnover Intention in Chinese High School Teachers: Considering the Moderating Role of Job Burnout," IJERPH, MDPI, vol. 18(12), pages 1-15, June.
    9. Samane Ghazali & Hossein Azadi & Kristina Janečková & Petr Sklenička & Alishir Kurban & Sedef Cakir, 2021. "Indigenous knowledge about climate change and sustainability of nomadic livelihoods: understanding adaptability coping strategies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16744-16768, November.
    10. Alam, Md. Mahmudul & Siwar, Chamhuri & Al-Amin, Abul Quasem, 2019. "Climate Change Adaptation Policy Guidelines for Agricultural Sector in Malaysia," OSF Preprints 3snja, Center for Open Science.
    11. Martinsohn, Maria & Hansen, Heiko, 2012. "The Impact of Climate Change on the Economics of Dairy Farming – a Review and Evaluation," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 61(02), pages 1-16, May.
    12. Claudio Szlafsztein, 2014. "Development projects for small rural communities in the Brazilian Amazon region as potential strategies and practices of climate change adaptation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(2), pages 143-160, February.
    13. Burhan Ozkan & Handan Akcaoz, 2002. "Impacts of climate factors on yields for selected crops in the Southern Turkey," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(4), pages 367-380, December.
    14. Guenther-Lübbers, Welf & Arens, Ludwig & Theuvsen, Ludwig, 2013. "Climate-Adapted Soil Cultivation as an Aspect for Sustainable Farming – Task-Technology-Fit of a Decision Support System," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 4(1), pages 1-9, July.
    15. Daniel Scott & Geoff McBoyle, 2007. "Climate change adaptation in the ski industry," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(8), pages 1411-1431, October.
    16. Bagus Setiabudi Wiwoho & Ike Sari Astuti & Purwanto Purwanto & Ifan Deffinika & Imam Abdul Gani Alfarizi & Hetty Rahmawati Sucahyo & Randhiki Gusti & Mochammad Tri Herwanto & Gilang Aulia Herlambang, 2023. "Assessing long-term rainfall trends and changes in a tropical watershed Brantas, Indonesia: an approach for quantifying the agreement among satellite-based rainfall data, ground rainfall data, and sma," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2835-2862, July.
    17. Sherren, Kate & Fischer, Joern & Fazey, Ioan, 2012. "Managing the grazing landscape: Insights for agricultural adaptation from a mid-drought photo-elicitation study in the Australian sheep-wheat belt," Agricultural Systems, Elsevier, vol. 106(1), pages 72-83.
    18. Sangam Shrestha & Proloy Deb & Thi Bui, 2016. "Adaptation strategies for rice cultivation under climate change in Central Vietnam," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 15-37, January.
    19. Nicholas Glass & Brenda Molano-Flores & Eduardo Dias de Oliveira & Erika Meraz & Samira Umar & Christopher J. Whelan & Miquel A. Gonzalez-Meler, 2021. "Does Pastoral Land-Use Legacy Influence Topsoil Carbon and Nitrogen Accrual Rates in Tallgrass Prairie Restorations?," Land, MDPI, vol. 10(7), pages 1-20, July.
    20. Sauer, Johannes & Finger, Robert, 2014. "Climate Risk Management Strategies in Agriculture – The Case of Flood Risk," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 172679, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:9:p:2644-:d:229385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.