IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i8p2322-d223833.html
   My bibliography  Save this article

The Economic-Environmental Impacts of China’s Action Plan for Soil Pollution Control

Author

Listed:
  • Zhitao Li

    (Soil Environmental Protection Center, Chinese Academy for Environmental Planning, Beijing 100012, China
    School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China)

  • Xiahui Wang

    (Soil Environmental Protection Center, Chinese Academy for Environmental Planning, Beijing 100012, China)

  • Jia Li

    (International Center for Environmental Technology, International Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing 100035, China)

  • Wei Zhang

    (State Environmental Protection Key Laboratory of Environmental Planning and Policy Simulation, Chinese Academy for Environmental Planning, Beijing 100012, China)

  • Ruiping Liu

    (Soil Environmental Protection Center, Chinese Academy for Environmental Planning, Beijing 100012, China)

  • Zhixiao Song

    (Soil Environmental Protection Center, Chinese Academy for Environmental Planning, Beijing 100012, China)

  • Guoxin Huang

    (Soil Environmental Protection Center, Chinese Academy for Environmental Planning, Beijing 100012, China)

  • Linglong Meng

    (Soil Environmental Protection Center, Chinese Academy for Environmental Planning, Beijing 100012, China)

Abstract

To effectively control soil pollution, an action plan (called Soil Plan) was carried out by Chinese government in 2016, which may cost CNY 1.14 trillion during the 2016–2020 period. To evaluate the potential impacts of this action plan on the national economy and environmental control, this study employed a closed macro input-output model to quantitatively account for the economic and environmental impacts from the view of the whole domestic supply chain. Our results show that the implementation of the Soil Plan may stimulate economic development and bring more jobs. It will help generate a gross domestic product (GDP) of CNY 2.72 trillion, with CNY 358.11 billion (15%) made from direct contributions, and CNY 2.36 trillion (85%) from indirect contributions. Meanwhile, the scheme could also produce 2 million jobs within five years, of which 580,000 (29%) are a direct contribution, and 1.42 million (71%) are an indirect contribution. On the other hands, increased demands for products and services of various sectors (such as power/heat production and supply, and chemical products) would also cause more air and water pollutants along with domestic supply chains. The emissions of sulfur dioxide(SO 2 ), nitrogen oxide(NO x ), chemical oxygen demand (COD) and ammonia nitrogen(NH 3 -N) would increase by a total of 5.20 × 10 5 t, 5.27 × 10 5 t, 1.62 × 10 5 t and 9.36 × 10 3 t, respectively. Our results may raise the concern about the indirect impacts of an environmental policy for the policy maker from both economic and environmental perspectives.

Suggested Citation

  • Zhitao Li & Xiahui Wang & Jia Li & Wei Zhang & Ruiping Liu & Zhixiao Song & Guoxin Huang & Linglong Meng, 2019. "The Economic-Environmental Impacts of China’s Action Plan for Soil Pollution Control," Sustainability, MDPI, vol. 11(8), pages 1-12, April.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2322-:d:223833
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/8/2322/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/8/2322/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nässén, Jonas & Holmberg, John & Wadeskog, Anders & Nyman, Madeleine, 2007. "Direct and indirect energy use and carbon emissions in the production phase of buildings: An input–output analysis," Energy, Elsevier, vol. 32(9), pages 1593-1602.
    2. Pasuiuca, Carl Jr., 1984. "The short-run impact of environmental protection costs on U.S. product prices," Journal of Environmental Economics and Management, Elsevier, vol. 11(4), pages 380-390, December.
    3. Llop, Maria, 2007. "Economic structure and pollution intensity within the environmental input-output framework," Energy Policy, Elsevier, vol. 35(6), pages 3410-3417, June.
    4. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    5. Giulio Mario Cappelletti & Giuseppe Ioppolo & Giuseppe Martino Nicoletti & Carlo Russo, 2014. "Energy Requirement of Extra Virgin Olive Oil Production," Sustainability, MDPI, vol. 6(8), pages 1-9, August.
    6. Hoekstra, Rutger & van den Bergh, Jeroen C.J.M., 2006. "Constructing physical input-output tables for environmental modeling and accounting: Framework and illustrations," Ecological Economics, Elsevier, vol. 59(3), pages 375-393, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tarancon, Miguel Angel & Del Río, Pablo, 2012. "Assessing energy-related CO2 emissions with sensitivity analysis and input-output techniques," Energy, Elsevier, vol. 37(1), pages 161-170.
    2. Llop, Maria, 2017. "Changes in energy output in a regional economy: A structural decomposition analysis," Energy, Elsevier, vol. 128(C), pages 145-151.
    3. Roca, Jordi & Serrano, Monica, 2007. "Income growth and atmospheric pollution in Spain: An input-output approach," Ecological Economics, Elsevier, vol. 63(1), pages 230-242, June.
    4. Butnar, Isabela & Llop, Maria, 2011. "Structural decomposition analysis and input-output subsystems: Changes in CO2 emissions of Spanish service sectors (2000-2005)," Ecological Economics, Elsevier, vol. 70(11), pages 2012-2019, September.
    5. Liu, Hongtao & Polenske, Karen R. & Guilhoto, Joaquim José Martins & Xi, Youmin, 2011. "Direct and indirect energy consumption in China and the United States," MPRA Paper 35830, University Library of Munich, Germany.
    6. Liang, Sai & Zhang, Tianzhu & Wang, Yafei & Jia, Xiaoping, 2012. "Sustainable urban materials management for air pollutants mitigation based on urban physical input–output model," Energy, Elsevier, vol. 42(1), pages 387-392.
    7. Li-Jing Liu & Qiao-Mei Liang & Felix Creutzig & Nan Cheng & Lan-Cui Liu, 2021. "Electricity end-use and construction activity are key leverage points for co-controlling greenhouse gases and local pollution in China," Climatic Change, Springer, vol. 167(1), pages 1-22, July.
    8. Liu, Hongtao & Xi, Youmin & Guo, Ju'e & Li, Xia, 2010. "Energy embodied in the international trade of China: An energy input-output analysis," Energy Policy, Elsevier, vol. 38(8), pages 3957-3964, August.
    9. Konan, Denise Eby & Chan, Hing Ling, 2010. "Greenhouse gas emissions in Hawai[modifier letter turned comma]i: Household and visitor expenditure analysis," Energy Economics, Elsevier, vol. 32(1), pages 210-219, January.
    10. Cansino, José M. & Román, Rocío & Ordóñez, Manuel, 2016. "Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis," Energy Policy, Elsevier, vol. 89(C), pages 150-159.
    11. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    12. Du, Huibin & Guo, Jianghong & Mao, Guozhu & Smith, Alexander M. & Wang, Xuxu & Wang, Yuan, 2011. "CO2 emissions embodied in China-US trade: Input-output analysis based on the emergy/dollar ratio," Energy Policy, Elsevier, vol. 39(10), pages 5980-5987, October.
    13. Wood, Richard & Lenzen, Manfred, 2009. "Structural path decomposition," Energy Economics, Elsevier, vol. 31(3), pages 335-341, May.
    14. Zhang, Zhonghua & Zhao, Yuhuan & Su, Bin & Zhang, Yongfeng & Wang, Song & Liu, Ya & Li, Hao, 2017. "Embodied carbon in China’s foreign trade: An online SCI-E and SSCI based literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 492-510.
    15. Nishijima, Daisuke, 2017. "The role of technology, product lifetime, and energy efficiency in climate mitigation: A case study of air conditioners in Japan," Energy Policy, Elsevier, vol. 104(C), pages 340-347.
    16. Shigemi Kagawa & Yuriko Goto & Sangwon Suh & Keisuke Nansai & Yuki Kudoh, 2012. "Accounting for Changes in Automobile Gasoline Consumption in Japan: 2000–2007," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 1(1), pages 1-27, December.
    17. Wang, Ke & Yang, Kexin & Wei, Yi-Ming & Zhang, Chi, 2018. "Shadow prices of direct and overall carbon emissions in China’s construction industry: A parametric directional distance function-based sensitive estimation," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 180-193.
    18. Jesper Stage, 2002. "Structural Shifts In Namibian Energy Use: An Input‐Output Approach," South African Journal of Economics, Economic Society of South Africa, vol. 70(6), pages 1103-1125, September.
    19. Xie, Rui & Wang, Fangfang & Chevallier, Julien & Zhu, Bangzhu & Zhao, Guomei, 2018. "Supply-side structural effects of air pollutant emissions in China: A comparative analysis," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 89-95.
    20. Butnar, Isabela & Llop Llop, Maria, 2010. "Structural decomposition analysis and input-output subsystems: An application to Spanish CO2 emissions," Working Papers 2072/151546, Universitat Rovira i Virgili, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:8:p:2322-:d:223833. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.