IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i6p1756-d216563.html
   My bibliography  Save this article

Discussion on the Reinforcement of Reinforced Concrete Slab Structures

Author

Listed:
  • Wei-Ling Hsu

    (School of Urban and Environmental Science, Huaiyin Normal University, Huai’an 223300, Jiangsu, China)

  • Chen-Chung Liu

    (Department of Civil Engineering, Chung Hua University, Hsinchu 30012, Taiwan)

  • Yan-Chyuan Shiau

    (Department of Landscape Architecture, Chung Hua University, Hsinchu 30012, Taiwan)

  • Wen-Chin Lin

    (Department of Architecture & Urban Planning, Chung Hua University, Hsinchu 30012, Taiwan)

Abstract

Because of global environmental changes and the continued warming of the planet, the increase in carbon dioxide emissions has had a major impact on the environment. The development of zero-carbon buildings, the promotion of energy conservation and carbon reduction, and the concept of green environmental protection are regarded as important issues for humanity to achieve sustainable development. In Taiwan, the combination of moisture and high salt content in the environment, corrosion caused by chloride ions, and earthquakes often lead to the formation of crevices in buildings. These crevices can cause rebar oxidation and corrosion and even concrete structure damage or spalling. Conventional structural damages can be repaired with epoxy resin grout. However, such practices are incapable of removing the rusted components of the rebars inside the structures and thus subject the internal rebars to continuous oxidation in the original rust-covered environment. Components located deep within the structures would still swell as a result of continuous rebar oxidation and cause concrete breaking and spalling, making previous repair efforts ineffective. This study proposes an improved repair and retrofit technique that includes the removal of rust from oxidated rebar parts, by applying low viscosity epoxy resin to the slab base and allowing it to fully penetrate the concrete cracks and surface of the rebars inside, thus producing a protective layer and repairing the bond. Additionally, carbon-fiber reinforced plastic (CFRP) patches were adopted as repair materials and attached to the beams and slab (ceiling) surfaces. Angle steels were used at the edges and installed to connect the beams to the slab with chemical anchors. The gaps between the angle steels and the slab were filled with epoxy resin grouts. On the short side of the slab, small steel H-beams were installed 1 m apart as a means of retrofit. Because the epoxy resin expands by 8% after undergoing chemical reactions, it bonds perfectly with concrete, CFRP patches, and steel materials. Approximately 10 years have elapsed since the case-study was repaired using the proposed technique, and the retrofit effect has yielded excellent results to the present day, with no occurrence of internal swelling or spalling from rebar oxidation. The proposed retrofit technique can reduce construction costs, while ensuring effective repair and maintenance of structural safety, and extend the service life of structures.

Suggested Citation

  • Wei-Ling Hsu & Chen-Chung Liu & Yan-Chyuan Shiau & Wen-Chin Lin, 2019. "Discussion on the Reinforcement of Reinforced Concrete Slab Structures," Sustainability, MDPI, vol. 11(6), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1756-:d:216563
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/6/1756/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/6/1756/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Trevor S.K. Ng & Raymond M.H. Yau & Tony N.T. Lam & Vincent S.Y. Cheng, 2016. "Design and commission a zero-carbon building for hot and humid climate," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(2), pages 222-234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Teen-Hang Meen & Charles Tijus & Jui-Che Tu, 2019. "Selected Papers from the Eurasian Conference on Educational Innovation 2019," Sustainability, MDPI, vol. 11(23), pages 1-12, December.
    2. Viktor Gribniak & Pui-Lam Ng & Vytautas Tamulenas & Ieva Misiūnaitė & Arnoldas Norkus & Antanas Šapalas, 2019. "Strengthening of Fibre Reinforced Concrete Elements: Synergy of the Fibres and External Sheet," Sustainability, MDPI, vol. 11(16), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karunathilake, Hirushie & Hewage, Kasun & Sadiq, Rehan, 2018. "Opportunities and challenges in energy demand reduction for Canadian residential sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2005-2016.
    2. Feng, Jing-Chun & Yan, Jinyue & Yu, Zhi & Zeng, Xuelan & Xu, Weijia, 2018. "Case study of an industrial park toward zero carbon emission," Applied Energy, Elsevier, vol. 209(C), pages 65-78.
    3. Röck, Martin & Saade, Marcella Ruschi Mendes & Balouktsi, Maria & Rasmussen, Freja Nygaard & Birgisdottir, Harpa & Frischknecht, Rolf & Habert, Guillaume & Lützkendorf, Thomas & Passer, Alexander, 2020. "Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation," Applied Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1756-:d:216563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.