IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i6p1703-d215878.html
   My bibliography  Save this article

Characteristics of Atmospheric Deposition during the Period of Algal Bloom Formation in Urban Water Bodies

Author

Listed:
  • Tao Zheng

    (College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
    Tongji Architectural Design (Group) Co., Ltd., Shanghai 200092, China)

  • Haihua Cao

    (College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China)

  • Wei Liu

    (College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China)

  • Jingcheng Xu

    (College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
    Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
    Key Laboratory of Yangtze River Water Environment, Ministry of Education, Shanghai 200092, China)

  • Yijing Yan

    (College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
    Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China)

  • Xiaohu Lin

    (College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China)

  • Juwen Huang

    (College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
    Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China)

Abstract

Urban water bodies are limited by poor mobility, small surface areas, and little water supply; thus, they are sensitive to atmospheric nutrient inputs, especially during the optimal period of algae growth. This study investigated the impact of atmospheric deposition on the Quyang urban water body in Shanghai. Observations that coupled atmospheric organic matter, nitrogen and phosphorous and the actual urban water body (nutrient availability and Chlorophyll-a concentrations ( Chl-a )) were conducted during spring and summer. Atmospheric total organic carbon (TOC), total nitrogen (TN), ammonia (N-NH 4 + ) and total phosphorus (TP) deposition ranged from 35–81, 3–40, 0.79–20.40 and 0.78–0.25 mg m −2 d −1 , respectively. The soluble N/P molar ratios of the bulk deposition (ranging from 56–636) were well above the Redfield ratio (N/P = 16). Nutrient inputs from atmospheric deposition have been suggested to be a strong factor for increasing the likelihood of P limitation in the water bodies. The actual loads to small, shallow urban water bodies were assessed and found to be ~50, 130, 130 (the N-fixation contributes to the atmospheric deposition inputs especially during the spring), and 80% of TOC, TN, N-NH 4 + , and TP, respectively, representing nutrients transferred into the water phase. The maximum primary production (evaluated as Chl-a ) stock resulting in a 2-m-deep water column from the above inputs ranged from 2.54–7.98 mg Chl-a m −3 . As a continuous source of nutrients, atmospheric deposition should not be underestimated as a driving force for urban water body eutrophication, and it potentially influences primary production, especially during the optimal algae growth period.

Suggested Citation

  • Tao Zheng & Haihua Cao & Wei Liu & Jingcheng Xu & Yijing Yan & Xiaohu Lin & Juwen Huang, 2019. "Characteristics of Atmospheric Deposition during the Period of Algal Bloom Formation in Urban Water Bodies," Sustainability, MDPI, vol. 11(6), pages 1-15, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1703-:d:215878
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/6/1703/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/6/1703/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Richard A. & Clough, Jonathan S. & Wellman, Marjorie Coombs, 2008. "AQUATOX: Modeling environmental fate and ecological effects in aquatic ecosystems," Ecological Modelling, Elsevier, vol. 213(1), pages 1-15.
    2. Dorte Krause-Jensen & Tina Greve & Kurt Nielsen, 2005. "Eelgrass as a Bioindicator Under the European Water Framework Directive," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(1), pages 63-75, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgia Ellina & Garyfalos Papaschinopoulos & Basil Papadopoulos, 2019. "The Use of Fuzzy Estimators for the Construction of a Prediction Model Concerning an Environmental Ecosystem," Sustainability, MDPI, vol. 11(18), pages 1-10, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grechi, Laura & Franco, Antonio & Palmeri, Luca & Pivato, Alberto & Barausse, Alberto, 2016. "An ecosystem model of the lower Po river for use in ecological risk assessment of xenobiotics," Ecological Modelling, Elsevier, vol. 332(C), pages 42-58.
    2. Doyeong Ku & Yeon-Ji Chae & Yerim Choi & Chang Woo Ji & Young-Seuk Park & Ihn-Sil Kwak & Yong-Jae Kim & Kwang-Hyeon Chang & Hye-Ji Oh, 2022. "Optimal Method for Biomass Estimation in a Cladoceran Species, Daphnia Magna (Straus, 1820): Evaluating Length–Weight Regression Equations and Deriving Estimation Equations Using Body Length, Width an," Sustainability, MDPI, vol. 14(15), pages 1-10, July.
    3. Hu, Wen & Li, Chun-hua & Ye, Chun & Wang, Ji & Wei, Wei-wei & Deng, Yong, 2019. "Research progress on ecological models in the field of water eutrophication: CiteSpace analysis based on data from the ISI web of science database," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    4. Niu, Zhiguang & Gou, Qianqian & Wang, Xiujun & Zhang, Ying, 2016. "Simulation of a water ecosystem in a landscape lake in Tianjin with AQUATOX: Sensitivity, calibration, validation and ecosystem prognosis," Ecological Modelling, Elsevier, vol. 335(C), pages 54-63.
    5. Bai, Jing & Zhao, Jian & Zhang, Zhenyu & Tian, Ziqiang, 2022. "Assessment and a review of research on surface water quality modeling," Ecological Modelling, Elsevier, vol. 466(C).
    6. Osakpolor, Stephen E. & Kattwinkel, Mira & Schirmel, Jens & Feckler, Alexander & Manfrin, Alessandro & Schäfer, Ralf B., 2021. "Mini-review of process-based food web models and their application in aquatic-terrestrial meta-ecosystems," Ecological Modelling, Elsevier, vol. 458(C).
    7. Yan, Jinxia & Liu, Jingling & You, Xiaoguang & Shi, Xuan & Zhang, Lulu, 2018. "Simulating the gross primary production and ecosystem respiration of estuarine ecosystem in North China with AQUATOX," Ecological Modelling, Elsevier, vol. 373(C), pages 1-12.
    8. Taner, Mehmet Ümit & Carleton, James N. & Wellman, Marjorie, 2011. "Integrated model projections of climate change impacts on a North American lake," Ecological Modelling, Elsevier, vol. 222(18), pages 3380-3393.
    9. Nagisetty, Raja M. & Flynn, Kyle F. & Uecker, Dylan, 2019. "Dissolved oxygen modeling of effluent-dominated macrophyte-rich Silver Bow Creek," Ecological Modelling, Elsevier, vol. 393(C), pages 85-97.
    10. E. Güneş & İ. Talınlı, 2013. "A Site-Specific Index to Control the Total Effect of Point Sources Discharges and to Achieve ‘Good Chemical Status’ in Effluent Dependent and Effluent Dominated Water Bodies: Application on Ergene Riv," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 221-237, January.
    11. Ciric, C. & Ciffroy, P. & Charles, S., 2012. "Use of sensitivity analysis to identify influential and non-influential parameters within an aquatic ecosystem model," Ecological Modelling, Elsevier, vol. 246(C), pages 119-130.
    12. Gentile, U. & Marrone, S. & Nardone, R. & Bellini, E., 2020. "Computer-aided security assessment of water networks monitoring platforms," International Journal of Critical Infrastructure Protection, Elsevier, vol. 31(C).
    13. Blancher, Eldon C. & Park, Richard A. & Clough, Jonathan S. & Milroy, Scott P. & Graham, W. Monty & Rakocinski, Chet F. & Hendon, J. Read & Wiggert, Jerry D. & Leaf, Robert, 2017. "Establishing nearshore marine secondary productivity baseline estimates for multiple habitats in coastal Mississippi and Alabama using AQUATOX 3.1 NME for use in the Deepwater Horizon natural resource," Ecological Modelling, Elsevier, vol. 359(C), pages 49-68.
    14. De La Fuente, G. & Asnaghi, V. & Chiantore, M. & Thrush, S. & Povero, P. & Vassallo, P. & Petrillo, M. & Paoli, C., 2019. "The effect of Cystoseira canopy on the value of midlittoral habitats in NW Mediterranean, an emergy assessment," Ecological Modelling, Elsevier, vol. 404(C), pages 1-11.
    15. Flynn, Kyle F. & Chapra, Steven C. & Suplee, Michael W., 2013. "Modeling the lateral variation of bottom-attached algae in rivers," Ecological Modelling, Elsevier, vol. 267(C), pages 11-25.
    16. Mirosław Grzybowski & Paweł Burandt & Katarzyna Glińska-Lewczuk & Sylwia Lew & Krystian Obolewski, 2022. "Response of Macrophyte Diversity in Coastal Lakes to Watershed Land Use and Salinity Gradient," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    17. Zhang, Lulu & Cui, Jiansheng & Song, Tiance & Liu, Yong, 2018. "Application of an AQUATOX model for direct toxic effects and indirect ecological effects assessment of Polycyclic aromatic hydrocarbons (PAHs) in a plateau eutrophication lake, China," Ecological Modelling, Elsevier, vol. 388(C), pages 31-44.
    18. Zouiten, Hala & Díaz, César Álvarez & Gómez, Andrés García & Cortezón, José Antonio Revilla & Alba, Javier García, 2013. "An advanced tool for eutrophication modeling in coastal lagoons: Application to the Victoria lagoon in the north of Spain," Ecological Modelling, Elsevier, vol. 265(C), pages 99-113.
    19. Zhang, Lulu & Liu, Jingling & Li, Yi & Zhao, Yanwei, 2013. "Applying AQUATOX in determining the ecological risk assessment of polychlorinated biphenyl contamination in Baiyangdian Lake, North China," Ecological Modelling, Elsevier, vol. 265(C), pages 239-249.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1703-:d:215878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.