IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i6p1695-d215815.html
   My bibliography  Save this article

After COP21: Contested Transformations in the Energy/Agri-Food Nexus

Author

Listed:
  • Terry Marsden

    (Sustainable Places Research Institute, Cardiff University, Wales CF10 3AT, UK)

  • Karolina Rucinska

    (Centre for Integrated Renewable Energy Generation and Supply, Cardiff University, Wales CF10 3AT, UK)

Abstract

To what extent are we witnessing real transformatory change towards a low- or zero-carbon economy following the optimism surrounding the COP21 Paris agreements? Taking the energy/agri-food nexus as a major focus, the paper examines what it regards as highly contested co-evolutionary trends associated both with carbonised and geo-politically motivated ‘lock-in’ on the one hand, but nevertheless, the rise of significant post-carbon strategies and practices on the other. The latter may be significantly encouraged by the rise of what are termed as ‘stranded assets’ and disinvestments in the financial investment sector, and the opportunities for more distributed systems of production in the energy/agri-food nexus. These shifts suggest a more polyvalent set of post-carbonised capitalist and post-capitalist processes which demand a renewed political- ecological approach by scholars in understanding these multiple resources and transformatory processes. Overall, this would suggest that the transformations before us will not assume a ‘business as usual’ model of conventional (and concentrated) capitalist development.

Suggested Citation

  • Terry Marsden & Karolina Rucinska, 2019. "After COP21: Contested Transformations in the Energy/Agri-Food Nexus," Sustainability, MDPI, vol. 11(6), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1695-:d:215815
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/6/1695/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/6/1695/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moragues-Faus, Ana & Sonnino, Roberta & Marsden, Terry, 2017. "Exploring European food system vulnerabilities: Towards integrated food security governance," Environmental Science & Policy, Elsevier, vol. 75(C), pages 184-215.
    2. Cordula Kropp, 2018. "Controversies around energy landscapes in third modernity," Landscape Research, Taylor & Francis Journals, vol. 43(4), pages 562-573, May.
    3. James McCarthy, 2015. "A socioecological fix to capitalist crisis and climate change? The possibilities and limits of renewable energy," Environment and Planning A, , vol. 47(12), pages 2485-2502, December.
    4. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arsani Alina & Stefan George, 2024. "Energy Transition and European Sub-Models. Restructuring EU Economy," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 86-101.
    2. Altayib, Khalid & Dincer, Ibrahim, 2022. "Development of an integrated hydropower system with hydrogen and methanol production," Energy, Elsevier, vol. 240(C).
    3. David Gattie & Michael Hewitt, 2023. "National Security as a Value-Added Proposition for Advanced Nuclear Reactors: A U.S. Focus," Energies, MDPI, vol. 16(17), pages 1-26, August.
    4. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    5. Krupa, Joel & Harvey, L.D. Danny, 2017. "Renewable electricity finance in the United States: A state-of-the-art review," Energy, Elsevier, vol. 135(C), pages 913-929.
    6. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    7. Frate, Claudio Albuquerque & Brannstrom, Christian, 2017. "Stakeholder subjectivities regarding barriers and drivers to the introduction of utility-scale solar photovoltaic power in Brazil," Energy Policy, Elsevier, vol. 111(C), pages 346-352.
    8. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
    9. Kevin Ummel & Charles Fant, 2014. "Planning for Large-Scale Wind and Solar Power in South Africa: Identifying Cost-Effective Deployment Strategies Through Spatiotemporal Modelling," WIDER Working Paper Series wp-2014-121, World Institute for Development Economic Research (UNU-WIDER).
    10. Peura, Pekka, 2013. "From Malthus to sustainable energy—Theoretical orientations to reforming the energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 309-327.
    11. Griffiths, Steven, 2017. "A review and assessment of energy policy in the Middle East and North Africa region," Energy Policy, Elsevier, vol. 102(C), pages 249-269.
    12. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    13. Lenzen, Manfred & McBain, Bonnie & Trainer, Ted & Jütte, Silke & Rey-Lescure, Olivier & Huang, Jing, 2016. "Simulating low-carbon electricity supply for Australia," Applied Energy, Elsevier, vol. 179(C), pages 553-564.
    14. Mediavilla, Margarita & de Castro, Carlos & Capellán, Iñigo & Javier Miguel, Luis & Arto, Iñaki & Frechoso, Fernando, 2013. "The transition towards renewable energies: Physical limits and temporal conditions," Energy Policy, Elsevier, vol. 52(C), pages 297-311.
    15. Ronnie D. Lipschutz & Dustin Mulvaney, 2013. "The road not taken, round II: centralized vs. distributed energy strategies and human security," Chapters, in: Hugh Dyer & Maria Julia Trombetta (ed.), International Handbook of Energy Security, chapter 22, pages 483-506, Edward Elgar Publishing.
    16. Zeyringer, Marianne & Fais, Birgit & Keppo, Ilkka & Price, James, 2018. "The potential of marine energy technologies in the UK – Evaluation from a systems perspective," Renewable Energy, Elsevier, vol. 115(C), pages 1281-1293.
    17. Lacchini, Corrado & Rüther, Ricardo, 2015. "The influence of government strategies on the financial return of capital invested in PV systems located in different climatic zones in Brazil," Renewable Energy, Elsevier, vol. 83(C), pages 786-798.
    18. Yuxue Yang & Xuejiao Tan & Yafei Shi & Jun Deng, 2023. "What are the core concerns of policy analysis? A multidisciplinary investigation based on in-depth bibliometric analysis," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
    19. Martin Seidl & Manal Saifane, 2021. "A green intensity index to better assess the multiple functions of urban vegetation with an application to Paris metropolitan area," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 15204-15224, October.
    20. Antonelli, Marta & Basile, Linda & Gagliardi, Francesca & Isernia, Pierangelo, 2022. "The future of the Mediterranean agri-food systems: Trends and perspectives from a Delphi survey," Land Use Policy, Elsevier, vol. 120(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:6:p:1695-:d:215815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.