IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i4p1212-d208883.html
   My bibliography  Save this article

The Sustainability Conundrum of Fishmeal Substitution by Plant Ingredients in Shrimp Feeds

Author

Listed:
  • Wesley Malcorps

    (MatureDevelopment B.V., World Trade Center, 2595 AM The Hague, The Netherlands
    Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK)

  • Björn Kok

    (MatureDevelopment B.V., World Trade Center, 2595 AM The Hague, The Netherlands)

  • Mike van‘t Land

    (MatureDevelopment B.V., World Trade Center, 2595 AM The Hague, The Netherlands
    Research Institute for Agriculture, Fisheries and Food (ILVO), Fisheries and Aquatic Production, 8400 Ostend, Belgium)

  • Maarten Fritz

    (MatureDevelopment B.V., World Trade Center, 2595 AM The Hague, The Netherlands)

  • Davy van Doren

    (MatureDevelopment B.V., World Trade Center, 2595 AM The Hague, The Netherlands)

  • Kurt Servin

    (Mexico Aquaculture Research Inc., Guadalajara 45110, Mexico)

  • Paul van der Heijden

    (MatureDevelopment B.V., World Trade Center, 2595 AM The Hague, The Netherlands
    Association of International Seafood Professionals, Southbank, VIC 3006, Australia
    Aquaculture without Frontiers, Oakland, CA 94610, USA)

  • Roy Palmer

    (Association of International Seafood Professionals, Southbank, VIC 3006, Australia
    Aquaculture without Frontiers, Oakland, CA 94610, USA
    Universidad Tecnológica del Mar de Tamaulipas, Soto La Marina - La Pesca, Km. 46+400, S/N, La Pesca 87678, Municipio de Soto la Marina, Tamaulipas, México)

  • Neil A. Auchterlonie

    (IFFO, The Marine Ingredients Organisation, London SE17 3BZ, UK)

  • Max Rietkerk

    (Department of Innovation, Environmental and Energy Sciences, Copernicus Institute of Sustainable Development, Utrecht University, 3508 TC Utrecht, The Netherlands)

  • Maria J. Santos

    (Department of Innovation, Environmental and Energy Sciences, Copernicus Institute of Sustainable Development, Utrecht University, 3508 TC Utrecht, The Netherlands
    University Research Priority Program in Global Change and Biodiversity and Department of Geography, University of Zürich, 8057 Zürich, Switzerland)

  • Simon J. Davies

    (Fish Nutrition and Aquaculture Group, Department of Animal Production, Welfare and Veterinary Sciences, Harper Adams University, Newport TF10 8NB, UK)

Abstract

Aquaculture is central in meeting expanding global demands for shrimp consumption. Consequently, increasing feed use is mainly responsible for the overall environmental impact of aquaculture production. Significant amounts of fishmeal are included in shrimp diets, causing dependency on finite marine resources. Driven by economic incentives, terrestrial plant ingredients are widely viewed as sustainable alternatives. Incremental fishmeal substitution by plant ingredients in shrimp feed was modeled and effects on marine and terrestrial resources such as fish, land, freshwater, nitrogen, and phosphorus were assessed. We find that complete substitution of 20–30% fishmeal totals could lead to increasing demand for freshwater (up to 63%), land (up to 81%), and phosphorus (up to 83%), while other substitution rates lead to proportionally lower impacts. These findings suggest additional pressures on essential agricultural resources with associated socio-economic and environmental effects as a trade-off to pressures on finite marine resources. Even though the production of shrimp feed (or aquafeed in general) utilizes only a small percentage of the global crop production, the findings indicate that the sustainability of substituting fishmeal by plant ingredients should not be taken for granted, especially since aquaculture has been one of the fastest growing food sectors. Therefore, the importance of utilizing by-products and novel ingredients such as microbial biomass, algae, and insect meals in mitigating the use of marine and terrestrial resources is discussed.

Suggested Citation

  • Wesley Malcorps & Björn Kok & Mike van‘t Land & Maarten Fritz & Davy van Doren & Kurt Servin & Paul van der Heijden & Roy Palmer & Neil A. Auchterlonie & Max Rietkerk & Maria J. Santos & Simon J. Davi, 2019. "The Sustainability Conundrum of Fishmeal Substitution by Plant Ingredients in Shrimp Feeds," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:4:p:1212-:d:208883
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/4/1212/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/4/1212/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Halley E. Froehlich & Nis Sand Jacobsen & Timothy E. Essington & Tyler Clavelle & Benjamin S. Halpern, 2018. "Avoiding the ecological limits of forage fish for fed aquaculture," Nature Sustainability, Nature, vol. 1(6), pages 298-303, June.
    2. Moretti, Christian & Moro, Alberto & Edwards, Robert & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2017. "Analysis of standard and innovative methods for allocating upstream and refinery GHG emissions to oil products," Applied Energy, Elsevier, vol. 206(C), pages 372-381.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omeje, Julius Emeka & Achike, Anthonia Ifeyinwa & Nwabeze, Godfrey O & Ibiyo, Lenient Mercy O & Jimmy, Samuel Preye, 2023. "Economic Analysis of Locally Produced Aquaculture Feeds with Complements of Plant-based Ingredients in Kainji Lake Basin, Nigeria," Research on World Agricultural Economy, Nan Yang Academy of Sciences Pte Ltd (NASS), vol. 4(1), March.
    2. Wesley Malcorps & Richard W. Newton & Silvia Maiolo & Mahmoud Eltholth & Changbo Zhu & Wenbo Zhang & Saihong Li & Michael Tlusty & David C. Little, 2021. "Global Seafood Trade: Insights in Sustainability Messaging and Claims of the Major Producing and Consuming Regions," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    3. Jessica Petereit & Christina Hoerterer & Adrian A. Bischoff-Lang & Luís E. C. Conceição & Gabriella Pereira & Johan Johansen & Roberto Pastres & Bela H. Buck, 2022. "Adult European Seabass ( Dicentrarchus labrax ) Perform Well on Alternative Circular-Economy-Driven Feed Formulations," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    4. Molatelo Junior Madibana & Mulunda Mwanza & Brett Roderick Lewis & Chris Henri Fouché & Rashieda Toefy & Victor Mlambo, 2020. "Black Soldier Fly Larvae Meal as a Fishmeal Substitute in Juvenile Dusky Kob Diets: Effect on Feed Utilization, Growth Performance, and Blood Parameters," Sustainability, MDPI, vol. 12(22), pages 1-11, November.
    5. Bingbing Zhao & Yan Fang & Kang Wu & Fayu Zhang & Jiaquan Wang, 2019. "A Method of Large-Scale Resource Utilization of Algae—Eutrophic Waste from Lake Chao, China: Preparation and Performance Optimization of Composite Packaging Materials," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    6. Samuel Le Féon & Théo Dubois & Christophe Jaeger & Aurélie Wilfart & Nouraya Akkal-Corfini & Jacopo Bacenetti & Michele Costantini & Joël Aubin, 2021. "DEXiAqua, a Model to Assess the Sustainability of Aquaculture Systems: Methodological Development and Application to a French Salmon Farm," Sustainability, MDPI, vol. 13(14), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Moretti & Blanca Corona & Robert Edwards & Martin Junginger & Alberto Moro & Matteo Rocco & Li Shen, 2020. "Reviewing ISO Compliant Multifunctionality Practices in Environmental Life Cycle Modeling," Energies, MDPI, vol. 13(14), pages 1-24, July.
    2. Delfina Rogowska & Artur Wyrwa, 2021. "Analysis of the Potential for Reducing Life Cycle Greenhouse Gas Emissions from Motor Fuels," Energies, MDPI, vol. 14(13), pages 1-19, June.
    3. Salehi, Mohammad & Khajehpour, Hossein & Saboohi, Yadollah, 2020. "Extended Energy Return on Investment of multiproduct energy systems," Energy, Elsevier, vol. 192(C).
    4. Conteratto, Caroline & Artuzo, Felipe Dalzotto & Benedetti Santos, Omar Inácio & Talamini, Edson, 2021. "Biorefinery: A comprehensive concept for the sociotechnical transition toward bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Wang, An & Tu, Ran & Gai, Yijun & Pereira, Lucas G. & Vaughan, J. & Posen, I. Daniel & Miller, Eric J. & Hatzopoulou, Marianne, 2020. "Capturing uncertainty in emission estimates related to vehicle electrification and implications for metropolitan greenhouse gas emission inventories," Applied Energy, Elsevier, vol. 265(C).
    6. Heimann, Tobias & Delzeit, Ruth, 2024. "Land for fish: Quantifying the connection between the aquaculture sector and agricultural markets," Ecological Economics, Elsevier, vol. 217(C).
    7. Eric Johnson & Carl Vadenbo, 2020. "Modelling Variation in Petroleum Products’ Refining Footprints," Sustainability, MDPI, vol. 12(22), pages 1-15, November.
    8. Heimann, Tobias & Delzeit, Ruth, 2020. "Land for Fish: Does plant-based fodder demand of aquaculture production affect agricultural markets?," Conference papers 330207, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    9. Heimann, Tobias & Delzeit, Ruth, 2021. "Land for Fish: A scenario based CGE analysis of the effects of aquaculture production on agricultural markets," 2021 Conference, August 17-31, 2021, Virtual 315270, International Association of Agricultural Economists.
    10. Omeje, Julius Emeka & Achike, Anthonia Ifeyinwa & Nwabeze, Godfrey O & Ibiyo, Lenient Mercy O & Jimmy, Samuel Preye, 2023. "Economic Analysis of Locally Produced Aquaculture Feeds with Complements of Plant-based Ingredients in Kainji Lake Basin, Nigeria," Research on World Agricultural Economy, Nan Yang Academy of Sciences Pte Ltd (NASS), vol. 4(1), March.
    11. Heimann, Tobias & Delzeit, Ruth, 2024. "Land for fish: Quantifying the connection between the aquaculture sector and agricultural markets," Open Access Publications from Kiel Institute for the World Economy 281986, Kiel Institute for the World Economy (IfW Kiel).
    12. Manfroni, Michele & Bukkens, Sandra G.F. & Giampietro, Mario, 2022. "Securing fuel demand with unconventional oils: A metabolic perspective," Energy, Elsevier, vol. 261(PB).
    13. Vaccaro, Roberto & Rocco, Matteo V., 2021. "Quantifying the impact of low carbon transition scenarios at regional level through soft-linked energy and economy models: The case of South-Tyrol Province in Italy," Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:4:p:1212-:d:208883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.