IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i4p1104-d207460.html
   My bibliography  Save this article

Measuring Community Greening Merging Multi-Source Geo-Data

Author

Listed:
  • Weiying Gu

    (Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Land and Resources, P.R.C., Shenzhen 518060, China
    Pingshan Center for Urban Planning and Land Affairs of Shenzhen, Shenzhen 518118, China)

  • Yiyong Chen

    (Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Land and Resources, P.R.C., Shenzhen 518060, China
    Shenzhen Key Laboratory of Built Environment Optimization, School of Architecture and Urban Planning, Shenzhen University, Shenzhen 518060, China)

  • Muye Dai

    (High School Department, Shenzhen Experimental School, Shenzhen 518055, China)

Abstract

Urban residential greening provides opportunities for social integration and physical exercise. These activities are beneficial to promoting citizens’ mental health, relieving stress, and reducing obesity and violent crimes. However, how to measure the distribution and spatial difference of green resources in urban residential areas have been controversial. This study takes the greening of urban residential units in Shenzhen City as its research object, measures the various greening index values of each residential unit, and analyses the spatial distribution characteristics of residential greening, regional differences, and influencing factors. A large sample of street view pictures, urban land use and high-resolution remote sensing image data are employed to establish an urban residential greening database containing 14,196 residential units. This study proposes three greening indicators, namely, green coverage index, green view index, and accessible public green land index, for measuring the green coverage of residential units, the visible greening of surrounding street space and the public green land around, respectively. Results show that (1) the greening level of residential units in Shenzhen City is generally high, with the three indicators averaging 32.7%, 30.5%, and 15.1%, respectively; (2) the types of residential greening differ per area; and (3) the level of residential greening is affected by development intensity, location, elevation and residential type. Such findings can serve as a reference for improving the greening level of residential units. This study argues that one indicator alone cannot measure the greenness of a residential community. It proposes an accessible public green land index as a measure for the spatial relationship between residential units and green lands. It suggests that future green space planning should pay more attention to the spatial distribution of green land, and introduce quantitative indicators to ensure sufficient green lands around the walking range of residential areas.

Suggested Citation

  • Weiying Gu & Yiyong Chen & Muye Dai, 2019. "Measuring Community Greening Merging Multi-Source Geo-Data," Sustainability, MDPI, vol. 11(4), pages 1-14, February.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:4:p:1104-:d:207460
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/4/1104/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/4/1104/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Larson, Lincoln R. & Keith, Samuel J. & Fernandez, Mariela & Hallo, Jeffrey C. & Shafer, C. Scott & Jennings, Viniece, 2016. "Ecosystem services and urban greenways: What's the public's perspective?," Ecosystem Services, Elsevier, vol. 22(PA), pages 111-116.
    3. Bertram, Christine & Rehdanz, Katrin, 2015. "The role of urban green space for human well-being," Ecological Economics, Elsevier, vol. 120(C), pages 139-152.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhanqiang Zhu & Wei Lang & Xiaofang Tao & Jiali Feng & Kai Liu, 2019. "Exploring the Quality of Urban Green Spaces Based on Urban Neighborhood Green Index—A Case Study of Guangzhou City," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    2. Xiaohuan Xie & Hanzhi Zhou & Zhonghua Gou & Ming Yi, 2021. "Spatiotemporal Patterns of the Use of Green Space by White-Collar Workers in Chinese Cities: A Study in Shenzhen," Land, MDPI, vol. 10(10), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehzabin Tuli, Farzana & Mitra, Suman & Crews, Mariah B., 2021. "Factors influencing the usage of shared E-scooters in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 164-185.
    2. John Stanley & Janet Stanley, 2023. "Improving Appraisal Methodology for Land Use Transport Measures to Reduce Risk of Social Exclusion," Sustainability, MDPI, vol. 15(15), pages 1-18, August.
    3. Marie Geraldine Herrmann-Lunecke & Cristhian Figueroa-Martínez & Francisca Parra Huerta & Rodrigo Mora, 2022. "The Disabling City: Older Persons Walking in Central Neighbourhoods of Santiago de Chile," Sustainability, MDPI, vol. 14(17), pages 1-19, September.
    4. Li, Jingjing & Kim, Changjoo & Sang, Sunhee, 2018. "Exploring impacts of land use characteristics in residential neighborhood and activity space on non-work travel behaviors," Journal of Transport Geography, Elsevier, vol. 70(C), pages 141-147.
    5. Ding, Chuan & Wang, Donggen & Liu, Chao & Zhang, Yi & Yang, Jiawen, 2017. "Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 65-80.
    6. Van Acker, Veronique & Ho, Loan & Stevens, Larissa & Mulley, Corinne, 2020. "Quantifying the effects of childhood and previous residential experiences on the use of public transport," Journal of Transport Geography, Elsevier, vol. 86(C).
    7. Ding, Yu & Lu, Huapu, 2016. "Activity participation as a mediating variable to analyze the effect of land use on travel behavior: A structural equation modeling approach," Journal of Transport Geography, Elsevier, vol. 52(C), pages 23-28.
    8. Singleton, Patrick A. & Park, Keunhyun & Lee, Doo Hong, 2021. "Varying influences of the built environment on daily and hourly pedestrian crossing volumes at signalized intersections estimated from traffic signal controller event data," Journal of Transport Geography, Elsevier, vol. 93(C).
    9. Toşa, Cristian & Sato, Hitomi & Morikawa, Takayuki & Miwa, Tomio, 2018. "Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania," Journal of Transport Geography, Elsevier, vol. 68(C), pages 78-93.
    10. Liu, Yan & Wang, Siqin & Xie, Bin, 2019. "Evaluating the effects of public transport fare policy change together with built and non-built environment features on ridership: The case in South East Queensland, Australia," Transport Policy, Elsevier, vol. 76(C), pages 78-89.
    11. Regine Gerike & Caroline Koszowski & Bettina Schröter & Ralph Buehler & Paul Schepers & Johannes Weber & Rico Wittwer & Peter Jones, 2021. "Built Environment Determinants of Pedestrian Activities and Their Consideration in Urban Street Design," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    12. Chetan Doddamani & M. Manoj, 2023. "Analysis of the influences of built environment measures on household car and motorcycle ownership decisions in Hubli-Dharwad cities," Transportation, Springer, vol. 50(1), pages 205-243, February.
    13. Jie Gao & Dick Ettema & Marco Helbich & Carlijn B. M. Kamphuis, 2019. "Travel mode attitudes, urban context, and demographics: do they interact differently for bicycle commuting and cycling for other purposes?," Transportation, Springer, vol. 46(6), pages 2441-2463, December.
    14. He, Mingwei & He, Chengfeng & Shi, Zhuangbin & He, Min, 2022. "Spatiotemporal heterogeneous effects of socio-demographic and built environment on private car usage: An empirical study of Kunming, China," Journal of Transport Geography, Elsevier, vol. 101(C).
    15. Boukarta Soufiane & Berezowska-Azzag Ewa, 2020. "Exploring the Role of Socio-Economic and Built Environment Driving Factors in Shaping the Commuting Modal Share: A Path-Analysis-Based Approach," Quaestiones Geographicae, Sciendo, vol. 39(4), pages 87-107, December.
    16. Bolaños-Valencia, Ingrid & Villegas-Palacio, Clara & López-Gómez, Connie Paola & Berrouet, Lina & Ruiz, Aura, 2019. "Social perception of risk in socio-ecological systems. A qualitative and quantitative analysis," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    17. Mouratidis, Kostas & Ettema, Dick & Næss, Petter, 2019. "Urban form, travel behavior, and travel satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 306-320.
    18. Su, Rongxiang & Xiao, Jingyi & McBride, Elizabeth C. & Goulias, Konstadinos G., 2021. "Understanding senior's daily mobility patterns in California using human mobility motifs," Journal of Transport Geography, Elsevier, vol. 94(C).
    19. Hamdi Lemamsha & Chris Papadopoulos & Gurch Randhawa, 2018. "Perceived Environmental Factors Associated with Obesity in Libyan Men and Women," IJERPH, MDPI, vol. 15(2), pages 1-16, February.
    20. Ann Hartell, 2015. "Sprawl and Commuting: Exploring New Measures of United States Metro Regions," SRE-Disc sre-disc-2015_07, Institute for Multilevel Governance and Development, Department of Socioeconomics, Vienna University of Economics and Business.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:4:p:1104-:d:207460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.