IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i24p6984-d295223.html
   My bibliography  Save this article

Pricing Decision for Reverse Logistics System under Cross-Competitive Take-Back Mode Based on Game Theory

Author

Listed:
  • Dingzhong Feng

    (College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China)

  • Xinghui Yu

    (College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China)

  • Yongbo Mao

    (College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
    Department of Traffic Management Engineering, Zhejiang Police College, Hangzhou 310053, China)

  • Yangke Ding

    (College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China)

  • Ye Zhang

    (College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China)

  • Zhiyan Pan

    (College of Environment, Zhejiang University of Technology, Hangzhou 310014, China)

Abstract

Considering the reverse logistics system composed of two manufacturers and two recyclers under the cross-competitive take-back mode, which is influenced by multiple factors (industry competition, economies of scale, government subsidies, remanufacturing rate, etc.), a model for remanufacturing reverse logistics system based on Stackelberg game is established. Then, the Nash equilibrium solution of decision variables is solved to obtain the best profit of all participants under the cross-competitive take-back mode. Furthermore, the parameter constraint analysis is carried out, and the monopolistic take-back mode is introduced for comparative analysis. Then, the sensitivity analysis of the model is carried out. At last, a case analysis is carried out based on the current situation of waste electrical and electronic equipment (WEEE) recycling in China. The results show that the cross-competitive take-back mode is more advantageous to all participants in the reverse logistics system than the monopolistic take-back mode. Recyclers should actively sign contracts with multiple manufacturers to recycle waste products, making full use of the advantages of cross-competitive take-back mode to maximize the profits of all participants, so as to encourage them to recycle waste products and achieve sustainable development.

Suggested Citation

  • Dingzhong Feng & Xinghui Yu & Yongbo Mao & Yangke Ding & Ye Zhang & Zhiyan Pan, 2019. "Pricing Decision for Reverse Logistics System under Cross-Competitive Take-Back Mode Based on Game Theory," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:6984-:d:295223
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/24/6984/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/24/6984/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dobos, Imre & Richter, Knut, 2006. "A production/recycling model with quality consideration," International Journal of Production Economics, Elsevier, vol. 104(2), pages 571-579, December.
    2. Yanting Huang & Zongjun Wang, 2019. "Pricing and production decisions in a closed-loop supply chain considering strategic consumers and technology licensing," International Journal of Production Research, Taylor & Francis Journals, vol. 57(9), pages 2847-2866, May.
    3. Yangke Ding & Lei Ma & Ye Zhang & Dingzhong Feng, 2018. "Analysis of Evolution Mechanism and Optimal Reward-Penalty Mechanism for Collection Strategies in Reverse Supply Chains: The Case of Waste Mobile Phones in China," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    4. Karl Widerquist, 2018. "The Bottom Line," Exploring the Basic Income Guarantee, in: A Critical Analysis of Basic Income Experiments for Researchers, Policymakers, and Citizens, chapter 0, pages 93-98, Palgrave Macmillan.
    5. He, Qidong & Wang, Nengmin & Yang, Zhen & He, Zhengwen & Jiang, Bin, 2019. "Competitive collection under channel inconvenience in closed-loop supply chain," European Journal of Operational Research, Elsevier, vol. 275(1), pages 155-166.
    6. Yan Zhang & Yanyan He & Jinfeng Yue & Qinglong Gou, 2019. "Pricing decisions for a supply chain with refurbished products," International Journal of Production Research, Taylor & Francis Journals, vol. 57(9), pages 2867-2900, May.
    7. Yue Tan & Chunxiang Guo, 2019. "Research on Two-Way Logistics Operation with Uncertain Recycling Quality in Government Multi-Policy Environment," Sustainability, MDPI, vol. 11(3), pages 1-18, February.
    8. Feng, Lipan & Govindan, Kannan & Li, Chunfa, 2017. "Strategic planning: Design and coordination for dual-recycling channel reverse supply chain considering consumer behavior," European Journal of Operational Research, Elsevier, vol. 260(2), pages 601-612.
    9. R. Canan Savaskan & Luk N. Van Wassenhove, 2006. "Reverse Channel Design: The Case of Competing Retailers," Management Science, INFORMS, vol. 52(1), pages 1-14, January.
    10. Östlin, Johan & Sundin, Erik & Björkman, Mats, 2008. "Importance of closed-loop supply chain relationships for product remanufacturing," International Journal of Production Economics, Elsevier, vol. 115(2), pages 336-348, October.
    11. Huang, Min & Song, Min & Lee, Loo Hay & Ching, Wai Ki, 2013. "Analysis for strategy of closed-loop supply chain with dual recycling channel," International Journal of Production Economics, Elsevier, vol. 144(2), pages 510-520.
    12. Muhammad Arshad & Qazi Salman Khalid & Jaime Lloret & Antonio Leon, 2018. "An Efficient Approach for Coordination of Dual-Channel Closed-Loop Supply Chain Management," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    13. Choi, Tsan-Ming & Li, Yongjian & Xu, Lei, 2013. "Channel leadership, performance and coordination in closed loop supply chains," International Journal of Production Economics, Elsevier, vol. 146(1), pages 371-380.
    14. Georgiadis, Patroklos & Athanasiou, Efstratios, 2010. "The impact of two-product joint lifecycles on capacity planning of remanufacturing networks," European Journal of Operational Research, Elsevier, vol. 202(2), pages 420-433, April.
    15. R. Canan Savaskan & Shantanu Bhattacharya & Luk N. Van Wassenhove, 2004. "Closed-Loop Supply Chain Models with Product Remanufacturing," Management Science, INFORMS, vol. 50(2), pages 239-252, February.
    16. Biswas, Indranil & Raj, Alok & Srivastava, Samir K., 2018. "Supply chain channel coordination with triple bottom line approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 213-226.
    17. Dobos, Imre & Richter, Knut, 2004. "An extended production/recycling model with stationary demand and return rates," International Journal of Production Economics, Elsevier, vol. 90(3), pages 311-323, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Syed Asif Raza, 2022. "A bibliometric analysis of pricing models in supply chain," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(2), pages 228-251, April.
    2. Matsui, Kenji, 2022. "Optimal timing of acquisition price announcement for used products in a dual-recycling channel reverse supply chain," European Journal of Operational Research, Elsevier, vol. 300(2), pages 615-632.
    3. Matsui, Kenji, 2023. "Dual-recycling channel reverse supply chain design of recycling platforms under acquisition price competition," International Journal of Production Economics, Elsevier, vol. 259(C).
    4. Suvadarshini, Pinakhi & Biswas, Indranil & Srivastava, Samir K., 2023. "Impact of reverse channel competition, individual rationality, and information asymmetry on multi-channel closed-loop supply chain design," International Journal of Production Economics, Elsevier, vol. 259(C).
    5. Kai Liu & Chunfa Li & Runde Gu, 2021. "Pricing and Logistics Service Decisions in Platform-Led Electronic Closed-Loop Supply Chain with Remanufacturing," Sustainability, MDPI, vol. 13(20), pages 1-28, October.
    6. Wang, Qifei & Hong, Xianpei & Gong, Yeming (Yale) & Chen, Wanying (Amanda), 2020. "Collusion or Not: The optimal choice of competing retailers in a closed-loop supply chain," International Journal of Production Economics, Elsevier, vol. 225(C).
    7. Bo Wang & Ning Wang, 2022. "Decision Models for a Dual-Recycling Channel Reverse Supply Chain with Consumer Strategic Behavior," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    8. He, Qidong & Wang, Nengmin & Browning, Tyson R. & Jiang, Bin, 2022. "Competitive collection with convenience-perceived customers," European Journal of Operational Research, Elsevier, vol. 303(1), pages 239-254.
    9. Haitao Chen & Zhaohui Dong & Gendao Li, 2020. "Government Reward-Penalty Mechanism in Dual-Channel Closed-Loop Supply Chain," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    10. Yanting Huang & Zongjun Wang, 2017. "Dual-Recycling Channel Decision in a Closed-Loop Supply Chain with Cost Disruptions," Sustainability, MDPI, vol. 9(11), pages 1-28, November.
    11. Seyyed-Mahdi Hosseini-Motlagh & Maryam Johari & Mohammadreza Nematollahi & Parvin Pazari, 2023. "Reverse supply chain management with dual channel and collection disruptions: supply chain coordination and game theory approaches," Annals of Operations Research, Springer, vol. 324(1), pages 215-248, May.
    12. Juhong Chen & Di Wu & Peng Li, 2018. "Research on the Pricing Model of the Dual-Channel Reverse Supply Chain Considering Logistics Costs and Consumers’ Awareness of Sustainability Based on Regional Differences," Sustainability, MDPI, vol. 10(7), pages 1-31, June.
    13. Jian Li & Weihao Du & Fengmei Yang & Guowei Hua, 2014. "Evolutionary Game Analysis of Remanufacturing Closed-Loop Supply Chain with Asymmetric Information," Sustainability, MDPI, vol. 6(9), pages 1-13, September.
    14. Yande Gong & Mengze Chen & Yuliang Zhuang, 2019. "Decision-Making and Performance Analysis of Closed-Loop Supply Chain under Different Recycling Modes and Channel Power Structures," Sustainability, MDPI, vol. 11(22), pages 1-26, November.
    15. Sarkar, Sumit & Bhala, Shrey, 2021. "Coordinating a closed loop supply chain with fairness concern by a constant wholesale price contract," European Journal of Operational Research, Elsevier, vol. 295(1), pages 140-156.
    16. Ehsan Shekarian & Simme Douwe Flapper, 2021. "Analyzing the Structure of Closed-Loop Supply Chains: A Game Theory Perspective," Sustainability, MDPI, vol. 13(3), pages 1-32, January.
    17. Jalali, Hamed & Ansaripoor, Amir H. & De Giovanni, Pietro, 2020. "Closed-loop supply chains with complementary products," International Journal of Production Economics, Elsevier, vol. 229(C).
    18. Linan Zhou & Gengui Zhou & Hangying Li & Jian Cao, 2023. "Channel Selection of Closed-Loop Supply Chain for Scrapped Agricultural Machines Remanufacturing," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    19. Liu, Zhi & Li, Kevin W. & Li, Bang-Yi & Huang, Jun & Tang, Juan, 2019. "Impact of product-design strategies on the operations of a closed-loop supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 75-91.
    20. Umangi Pathak & Ravi Kant & Ravi Shankar, 2020. "Effect of buyback price on channel’s decision parameters for manufacturer-led close loop dual supply chain," OPSEARCH, Springer;Operational Research Society of India, vol. 57(2), pages 438-461, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:6984-:d:295223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.