IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i23p6600-d289899.html
   My bibliography  Save this article

Transport Management Characteristics of Urban Hazardous Material Handling Business Entities

Author

Listed:
  • Hongmo Sung

    (The Korea Transport Institute, Sejong 30147, Korea)

  • Jungeun Kim

    (The Korea Transport Institute, Sejong 30147, Korea)

  • Jungyeol Hong

    (Department of Transportation Engineering, University of Seoul, Seoul 02504, Korea)

  • Dongjoo Park

    (Department of Transportation Engineering, University of Seoul, Seoul 02504, Korea)

  • Young-Ihn Lee

    (Department of Environmental Planning, Seoul National University, Seoul 08826, Korea)

Abstract

In order to minimize the occurrence of large-scale accidents resulting from the transportation of hazardous materials (HAZMAT) on urban roadways, a system to monitor freight vehicle movements in real-time is being implemented. Although monitoring systems are in place, no prioritization strategy has been prepared for the selection of vehicles by the companies handling HAZMAT. Therefore, this study aims to analyze the factors affecting the level of transport management of HAZMAT handling business entities such as the freight, shipping, and vehicle characteristics, and suggests directions for effective policy enforcement of HAZMAT vehicle monitoring strategies. In this study, nation-wide survey data on the logistics status of HAZMAT handling business entities were collected, and the influence of such business entities according to their level of transport management was derived using an ordered logit model. Implications were obtained through statistical analysis of the transport management behavior of urban hazardous material handling business entities. In the future, it is necessary to study empirical methods for setting priorities based on the survey data of the entire population of HAZMAT transport vehicles.

Suggested Citation

  • Hongmo Sung & Jungeun Kim & Jungyeol Hong & Dongjoo Park & Young-Ihn Lee, 2019. "Transport Management Characteristics of Urban Hazardous Material Handling Business Entities," Sustainability, MDPI, vol. 11(23), pages 1-14, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6600-:d:289899
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/23/6600/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/23/6600/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chang, Yu-Hern & Yeh, Chung-Hsing & Liu, Yi-Lin, 2006. "Prioritizing management issues of moving dangerous goods by air transport," Journal of Air Transport Management, Elsevier, vol. 12(4), pages 191-196.
    2. George F. List & Pitu B. Mirchandani & Mark A. Turnquist & Konstantinos G. Zografos, 1991. "Modeling and Analysis for Hazardous Materials Transportation: Risk Analysis, Routing/Scheduling and Facility Location," Transportation Science, INFORMS, vol. 25(2), pages 100-114, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liping Liu & Jiaming Li & Lei Zhou & Tijun Fan & Shuxia Li, 2021. "Research on Route Optimization of Hazardous Materials Transportation Considering Risk Equity," Sustainability, MDPI, vol. 13(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dell'Olmo, Paolo & Gentili, Monica & Scozzari, Andrea, 2005. "On finding dissimilar Pareto-optimal paths," European Journal of Operational Research, Elsevier, vol. 162(1), pages 70-82, April.
    2. Yan Sun & Maoxiang Lang & Danzhu Wang, 2016. "Bi-Objective Modelling for Hazardous Materials Road–Rail Multimodal Routing Problem with Railway Schedule-Based Space–Time Constraints," IJERPH, MDPI, vol. 13(8), pages 1-31, July.
    3. Mohri, Seyed Sina & Mohammadi, Mehrdad & Gendreau, Michel & Pirayesh, Amir & Ghasemaghaei, Ali & Salehi, Vahid, 2022. "Hazardous material transportation problems: A comprehensive overview of models and solution approaches," European Journal of Operational Research, Elsevier, vol. 302(1), pages 1-38.
    4. Pradhananga, Rojee & Taniguchi, Eiichi & Yamada, Tadashi & Qureshi, Ali Gul, 2014. "Bi-objective decision support system for routing and scheduling of hazardous materials," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 135-148.
    5. Sheng Dong & Jibiao Zhou & Changxi Ma, 2020. "Design of a Network Optimization Platform for the Multivehicle Transportation of Hazardous Materials," IJERPH, MDPI, vol. 17(3), pages 1-14, February.
    6. Changxi Ma & Jibiao Zhou & Dong Yang, 2020. "Causation Analysis of Hazardous Material Road Transportation Accidents Based on the Ordered Logit Regression Model," IJERPH, MDPI, vol. 17(4), pages 1-25, February.
    7. Xiuguang Song & Jianqing Wu & Hongbo Zhang & Rendong Pi, 2020. "Analysis of Crash Severity for Hazard Material Transportation Using Highway Safety Information System Data," SAGE Open, , vol. 10(3), pages 21582440209, July.
    8. Justin Yates & Sujeevraja Sanjeevi, 2012. "Assessing the impact of vulnerability modeling in the protection of critical infrastructure," Journal of Geographical Systems, Springer, vol. 14(4), pages 415-435, October.
    9. Huo Chai & Ruichun He & Ronggui Kang & Xiaoyan Jia & Cunjie Dai, 2023. "Solving Bi-Objective Vehicle Routing Problems with Driving Risk Consideration for Hazardous Materials Transportation," Sustainability, MDPI, vol. 15(9), pages 1-17, May.
    10. Hunkar Toyoglu & Oya Ekin Karasan & Bahar Yetis Kara, 2011. "Distribution network design on the battlefield," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(3), pages 188-209, April.
    11. Szeto, W.Y. & Farahani, R.Z. & Sumalee, Agachai, 2017. "Link-based multi-class hazmat routing-scheduling problem: A multiple demon approach," European Journal of Operational Research, Elsevier, vol. 261(1), pages 337-354.
    12. Amirsaman Kheirkhah & HamidReza Navidi & Masume Messi Bidgoli, 2016. "A bi-level network interdiction model for solving the hazmat routing problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(2), pages 459-471, January.
    13. Tsung-Sheng Chang & Linda K. Nozick & Mark A. Turnquist, 2005. "Multiobjective Path Finding in Stochastic Dynamic Networks, with Application to Routing Hazardous Materials Shipments," Transportation Science, INFORMS, vol. 39(3), pages 383-399, August.
    14. Joaquín Pacheco & Rafael Caballero & Manuel Laguna & Julián Molina, 2013. "Bi-Objective Bus Routing: An Application to School Buses in Rural Areas," Transportation Science, INFORMS, vol. 47(3), pages 397-411, August.
    15. Nagy, Gabor & Salhi, Said, 2007. "Location-routing: Issues, models and methods," European Journal of Operational Research, Elsevier, vol. 177(2), pages 649-672, March.
    16. Jee Eun Kang & Will Recker, 2015. "Strategic Hydrogen Refueling Station Locations with Scheduling and Routing Considerations of Individual Vehicles," Transportation Science, INFORMS, vol. 49(4), pages 767-783, November.
    17. Abdelkader Sbihi & Richard W. Eglese, 2007. "The Relationship between Vehicle Routing & Scheduling and Green Logistics - A Literature Survey," Working Papers hal-00644133, HAL.
    18. Zajac, Sandra & Huber, Sandra, 2021. "Objectives and methods in multi-objective routing problems: a survey and classification scheme," European Journal of Operational Research, Elsevier, vol. 290(1), pages 1-25.
    19. Lundin, Johan F., 2012. "Redesigning a closed-loop supply chain exposed to risks," International Journal of Production Economics, Elsevier, vol. 140(2), pages 596-603.
    20. Zografos, Konstantinos G. & Androutsopoulos, Konstantinos N., 2004. "A heuristic algorithm for solving hazardous materials distribution problems," European Journal of Operational Research, Elsevier, vol. 152(2), pages 507-519, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6600-:d:289899. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.