IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i21p6142-d283273.html
   My bibliography  Save this article

Study on Shear Strength of Xanthan Gum-Amended Soil

Author

Listed:
  • Antonio Soldo

    (Department of Civil Engineering, Auburn University, AL 36849, USA)

  • Marta Miletić

    (Department of Civil, Construction, and Environmental Engineering, San Diego State University, CA 92182, USA)

Abstract

When construction work is planned on soil with inadequate shear strength, its engineering properties need to be improved. Chemical stabilization is one of the solutions for soil strength improvement. Currently, the most common additive that is used for chemical soil improvement is cement. Cement is an effective solution, but it has several negative effects on the environment. Therefore, the urges for environment-friendly solutions that can replace cement and show good potential for sustainable engineering are rising. One of the promising environment-friendly solutions is the use of biopolymers. Therefore, the main aim of the present study was to investigate the effect of the biopolymer xanthan gum on the strength of different types of soil. Xanthan gum was mixed with three different types of soil: sand, clay, and silty sand. The strength of treated and non-treated soil was experimentally investigated by performing unconfined compression, direct shear, and triaxial tests. From the results, it was observed that xanthan gum significantly increased the strength of each soil, which shows its major potential for the future of sustainable engineering.

Suggested Citation

  • Antonio Soldo & Marta Miletić, 2019. "Study on Shear Strength of Xanthan Gum-Amended Soil," Sustainability, MDPI, vol. 11(21), pages 1-13, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:6142-:d:283273
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/21/6142/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/21/6142/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ilhan Chang & Jooyoung Im & Gye-Chun Cho, 2016. "Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-Friendly and Sustainable Geotechnical Engineering," Sustainability, MDPI, vol. 8(3), pages 1-23, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quadri Olakunle Babatunde & Yong-Hoon Byun, 2023. "Soil Stabilization Using Zein Biopolymer," Sustainability, MDPI, vol. 15(3), pages 1-12, January.
    2. Quadri Olakunle Babatunde & Dong Geon Son & Sang Yeob Kim & Yong-Hoon Byun, 2023. "Effect of Curing Condition and Solvent Content on Mechanical Properties of Zein-Biopolymer-Treated Soil," Sustainability, MDPI, vol. 15(15), pages 1-13, August.
    3. Abdul Munaf Mohamed Irfeey & Hing-Wah Chau & Mohamed Mahusoon Fathima Sumaiya & Cheuk Yin Wai & Nitin Muttil & Elmira Jamei, 2023. "Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    4. Chunhui Chen & Zesen Peng & JiaYu Gu & Yaxiong Peng & Xiaoyang Huang & Li Wu, 2020. "Exploring Environmentally Friendly Biopolymer Material Effect on Soil Tensile and Compressive Behavior," IJERPH, MDPI, vol. 17(23), pages 1-13, December.
    5. Ilhan Chang & Minhyeong Lee & Gye-Chun Cho, 2019. "Global CO 2 Emission-Related Geotechnical Engineering Hazards and the Mission for Sustainable Geotechnical Engineering," Energies, MDPI, vol. 12(13), pages 1-21, July.
    6. Jing Ni & Gang-Lai Hao & Jia-Qi Chen & Lei Ma & Xue-Yu Geng, 2021. "The Optimisation Analysis of Sand-Clay Mixtures Stabilised with Xanthan Gum Biopolymers," Sustainability, MDPI, vol. 13(7), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:6142-:d:283273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.