IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5767-d277667.html
   My bibliography  Save this article

Analysis for Spatio-Temporal Variation Characteristics of Droughts in Different Climatic Regions of the Mongolian Plateau Based on SPEI

Author

Listed:
  • Laiquan Jin

    (School of Environment, Northeast Normal University, Changchun 130024, China
    Department of Land, Air and Water Resources, University of California, 1 Shields Avenue, Davis, CA 95616, USA
    College of Geography, Inner Mongolia Normal University, Huhhot 010022, China)

  • Jiquan Zhang

    (School of Environment, Northeast Normal University, Changchun 130024, China)

  • Ruoyu Wang

    (Department of Land, Air and Water Resources, University of California, 1 Shields Avenue, Davis, CA 95616, USA)

  • Minghua Zhang

    (Department of Land, Air and Water Resources, University of California, 1 Shields Avenue, Davis, CA 95616, USA)

  • Yuhai Bao

    (College of Geography, Inner Mongolia Normal University, Huhhot 010022, China)

  • Enliang Guo

    (College of Geography, Inner Mongolia Normal University, Huhhot 010022, China)

  • Yongfang Wang

    (College of Geography, Inner Mongolia Normal University, Huhhot 010022, China)

Abstract

Continuous climate warming in the last few decades has led to global climate anomalies, resulting in frequent drought events in arid/semiarid regions with fragile and sensitive ecological environment. The Mongolian Plateau (MP) is located at the mid-latitude arid/semiarid climate region, which is deemed as the most sensitive region in response to global climate change. In order to understand the spatiotemporal characteristics of droughts in Mongolian Plateau under changing climate, we divided the study area into three climatic regions via Köppen climate classification. Then, the seasonal and annual drought trends were analyzed by standardized precipitation evaporation index (SPEI), which is a function of monthly mean temperatures, highest temperatures, lowest temperatures and precipitations, collected from the 184 meteorological stations from 1980 to 2015. Mann–Kendall (MK) test was employed to detect if there is an abrupt change of annual drought, while the empirical orthogonal function method (EOF) was adopted to investigate the spatiotemporal characteristics of droughts across the Mongolian Plateau. Results from MK test illustrated that the SPEI-12 exhibited statistically significant downward trends (a < 0.05) for all three climatic regions of the Mongolian Plateau. EOF spatial analysis indicated that Region III experienced the most severe drought from 1980 to 2015. During the 35 years period, an abrupt change of drought was detected in 1999. Before year 1999, the climate was relatively humid. However, the entire region became more arid after year 1999, reflected by remarkably increased frequency and intensity of drought. SPEI-3 revealed the trend of drought at seasonal scale. We found that drought became more severe in spring, summer, and fall seasons for the entire MP. However, winter became more humid. Different climate regions exhibited quite different drought seasonality: Region I experienced a severe arid trend in summer and fall. For Region II and III, summer became more arid. All three regions became more humid in winter season, especially for Region I, with the Sen’s slope of 0.0241/a.

Suggested Citation

  • Laiquan Jin & Jiquan Zhang & Ruoyu Wang & Minghua Zhang & Yuhai Bao & Enliang Guo & Yongfang Wang, 2019. "Analysis for Spatio-Temporal Variation Characteristics of Droughts in Different Climatic Regions of the Mongolian Plateau Based on SPEI," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5767-:d:277667
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5767/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5767/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Winsemius, Hessel C. & Jongman, Brenden & Veldkamp, Ted I.E. & Hallegatte, Stephane & Bangalore, Mook & Ward, Philip J., 2018. "Disaster risk, climate change, and poverty: assessing the global exposure of poor people to floods and droughts," Environment and Development Economics, Cambridge University Press, vol. 23(3), pages 328-348, June.
    2. Banzragch Nandintsetseg & Masato Shinoda & Baasandai Erdenetsetseg, 2018. "Contributions of multiple climate hazards and overgrazing to the 2009/2010 winter disaster in Mongolia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 109-126, November.
    3. Du, Taisheng & Kang, Shaozhong & Sun, Jingsheng & Zhang, Xiying & Zhang, Jianhua, 2010. "An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China," Agricultural Water Management, Elsevier, vol. 97(1), pages 66-74, January.
    4. Lijuan Miao & Richard Fraser & Zhanli Sun & David Sneath & Bin He & Xuefeng Cui, 2016. "Climate impact on vegetation and animal husbandry on the Mongolian plateau: a comparative analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 727-739, January.
    5. Donald Wilhite & Mark Svoboda & Michael Hayes, 2007. "Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 763-774, May.
    6. Jianping Huang & Haipeng Yu & Xiaodan Guan & Guoyin Wang & Ruixia Guo, 2016. "Accelerated dryland expansion under climate change," Nature Climate Change, Nature, vol. 6(2), pages 166-171, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weilin Liu & Shengnan Zhu & Yipeng Huang & Yifan Wan & Bin Wu & Lina Liu, 2020. "Spatiotemporal Variations of Drought and Their Teleconnections with Large-Scale Climate Indices over the Poyang Lake Basin, China," Sustainability, MDPI, vol. 12(9), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Virginia Anne Kowal & Julian Ahlborn & Chantsallkham Jamsranjav & Otgonsuren Avirmed & Rebecca Chaplin-Kramer, 2021. "Modeling Integrated Impacts of Climate Change and Grazing on Mongolia’s Rangelands," Land, MDPI, vol. 10(4), pages 1-28, April.
    2. Laurie S. Huning & Sayed M. Bateni & Michael Hayes & Sarah Quynh-Giang Ho & Susantha Jayasinghe & Rohini Kumar & Carlos Lima & Charlotte A. Love & Kaveh Madani & Yannis Markonis & Mir A. Matin & Chiyu, 2024. "Sustainability nexus analytics, informatics, and data (AID): Drought," Sustainability Nexus Forum, Springer, vol. 32(1), pages 1-12, December.
    3. Jale Amanuel Dufera & Tewodros Addisu Yate & Tadesse Tujuba Kenea, 2023. "Spatiotemporal analysis of drought in Oromia regional state of Ethiopia over the period 1989 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1569-1609, June.
    4. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    5. Qian Li & Yan Chen & Shikun Sun & Muyuan Zhu & Jing Xue & Zihan Gao & Jinfeng Zhao & Yihe Tang, 2022. "Research on Crop Irrigation Schedules Under Deficit Irrigation—A Meta-analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4799-4817, September.
    6. Mook Bangalore & Andrew Smith & Ted Veldkamp, 2019. "Exposure to Floods, Climate Change, and Poverty in Vietnam," Economics of Disasters and Climate Change, Springer, vol. 3(1), pages 79-99, April.
    7. L. Vergni & F. Todisco & B. Lena, 2021. "Evaluation of the similarity between drought indices by correlation analysis and Cohen's Kappa test in a Mediterranean area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2187-2209, September.
    8. Araceli Martin-Candilejo & Francisco J. Martin-Carrasco & Ana Iglesias & Luis Garrote, 2023. "Heading into the Unknown? Exploring Sustainable Drought Management in the Mediterranean Region," Sustainability, MDPI, vol. 16(1), pages 1-18, December.
    9. Mohammad Ghabaei Sough & Hamid Zare Abyaneh & Abolfazl Mosaedi, 2018. "Assessing a Multivariate Approach Based on Scalogram Analysis for Agricultural Drought Monitoring," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3423-3440, August.
    10. Wuliyasu Bai & Liang Yan & Jingbo Liang & Long Zhang, 2022. "Mapping Knowledge Domain on Economic Growth and Water Sustainability: A Scientometric Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4137-4159, September.
    11. Lampros Vasiliades & Athanasios Loukas & Nikos Liberis, 2011. "A Water Balance Derived Drought Index for Pinios River Basin, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1087-1101, March.
    12. Richard S. J. Tol, 2021. "The Economic Impact of Climate in the Long Run," World Scientific Book Chapters, in: Anil Markandya & Dirk Rübbelke (ed.), CLIMATE AND DEVELOPMENT, chapter 1, pages 3-36, World Scientific Publishing Co. Pte. Ltd..
    13. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    14. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    15. Peter Tangney & Claire Nettle & Beverley Clarke & Joshua Newman & Cassandra Star, 2021. "Climate security in the Indo-Pacific: a systematic review of governance challenges for enhancing regional climate resilience," Climatic Change, Springer, vol. 167(3), pages 1-30, August.
    16. A. S. Giannikopoulou & F. K. Gad & E. Kampragou & D. Assimacopoulos, 2017. "Risk-Based Assessment of Drought Mitigation Options: the Case of Syros Island, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(2), pages 655-669, January.
    17. Savé, R. & de Herralde, F. & Aranda, X. & Pla, E. & Pascual, D. & Funes, I. & Biel, C., 2012. "Potential changes in irrigation requirements and phenology of maize, apple trees and alfalfa under global change conditions in Fluvià watershed during XXIst century: Results from a modeling approximat," Agricultural Water Management, Elsevier, vol. 114(C), pages 78-87.
    18. Castells-Quintana, David & del Pilar Lopez-Uribe, Maria & McDermott, Thomas K.J., 2018. "A review of adaptation to climate change through a development economics lens," Working Papers 309605, National University of Ireland, Galway, Socio-Economic Marine Research Unit.
    19. Coral Salvador & Raquel Nieto & Cristina Linares & Julio Díaz & Luis Gimeno, 2020. "Quantification of the Effects of Droughts on Daily Mortality in Spain at Different Timescales at Regional and National Levels: A Meta-Analysis," IJERPH, MDPI, vol. 17(17), pages 1-16, August.
    20. Ma, Shou-tian & Wang, Tong-chao & Ma, Shou-Chen, 2022. "Effects of drip irrigation on root activity pattern, root-sourced signal characteristics and yield stability of winter wheat," Agricultural Water Management, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5767-:d:277667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.